专栏名称: 猎芯头条
让电子产业链更简单!
目录
相关文章推荐
中国能源报  ·  国家能源局征集 ·  昨天  
楚雄州人民政府  ·  ​我州推进土地资源节约集约利用 ·  昨天  
广告文案  ·  麦当劳先动手,肯德基不忍了 ·  2 天前  
8099999街头巷尾  ·  微信牵手DeepSeek?有人趁虚而入,这种 ... ·  4 天前  
8099999街头巷尾  ·  微信牵手DeepSeek?有人趁虚而入,这种 ... ·  4 天前  
51好读  ›  专栏  ›  猎芯头条

5G通信+SMT智能自动化工厂 终于有人讲明白了!

猎芯头条  · 公众号  ·  · 2019-07-31 17:13

正文

智能工厂是5G技术的重要应用场景之一;利用5G网络将生产设备 无缝连接 并进一步打通设计、采购、仓储、物流等环节,使生产更加扁平化、定制化、智能化,从而构造一个面向未来的智能制造网络。

1

移动通信技术的发展


回顾移动通信技术的发展历程, 第一代采用的是模拟技术 ,只能支持区域和距离限制的语音通话; 第二代实现了数字化语音通讯 ,能进行简单的语音和文字类交互,比如短信和邮件等; 第三代就是大家熟知的3G技术 ,以多媒体通讯为特征,可以支持语音、文字和视频交互,但由于带宽有限,在进行大量数据交互时,如视频交互时很难保证效果的流畅; 第四代是正在铺建的4G技术 ,通讯速率大幅提升,标志着进入无线宽带年代。



5G,即第五代移动通信技术,国际电联将5G应用场景划分为移动互联网和物联网两大类。 5G呈现出低时延、高可靠、低功耗的特点,已经不再是一个单一的无线接入技术,而是多种新型无线接入技术和现有无线接入技术(4G后向演进技术)集成后的解决方案总称。



从当前电信服务商做的基站测试结果看,5G的速度将会比4G更快且功耗更低,理论带宽将突破每秒10G。这保证你能够在一秒钟内下载一部高清电影,而4G需要至少10分钟。 恰是由于这一得天独厚的优势,业界普遍认为,5G将对智能工业、无人驾驶汽车、VR以及物联网等领域产生重要推动作用。


2

解读5G技术



① 5G定义的三大场景
2016年,华为主推的PolarCode方案被国际无线标准化机构3GPP确定为eMBB场景的控制信道编码方案,而数据信道的上行和下行短码方案则归属高通LDPC码。eMBB即增强移动宽带,是3GPP会议上定义5G三大场景之一。华为的PolarCode信道编码技术只是5G众多核心技术的一种。除eMBB之外,5G场景还包括mMTC和URLLC。


5G定义的三大场景


随着5G的应用 关于5G通信,常见的文章都讲的晦涩难懂,不忍往下看,特转载一篇,用大白话实现5G入门。


图表:5G对社会经济影响的测算图
来源:信通院
简单说,5G就是第五代通信技术,主要特点是波长为毫米级,超宽带,超高速度,超低延时。1G实现了模拟语音通信,大哥大没有屏幕只能打电话;2G实现了语音通信数字化,功能机有了小屏幕可以发短信了;3G实现了语音以外图片等的多媒体通信,屏幕变大可以看图片了;4G实现了局域高速上网,大屏智能机可以看短视频了,但在城市信号好,老家信号差。1G~4G都是着眼于人与人之间更方便快捷的通信,而5G将实现随时、随地、万物互联,让人类敢于期待与地球上的万物通过直播的方式无时差同步参与其中。


-------------------------------



一个简单且神奇的公式




有线?无线?



通信技术,归根到底,就分为两种——有线通信和无线通信。


信息数据要么在空中传播(看不见、摸不着),要么在实物上传播(看得见、摸得着)。



在有线介质上传播数据,速率可以达到很高的数值。 而 空中传播 这部分,才是移动通信的瓶颈所在。


目前主流的4G LTE,理论速率只有150Mbps。这个和有线是完全没办法相比的。



所以, 5G如果要实现端到端的高速率,重点是突破无线这部分 的瓶颈


好大一个电磁波


无线通信就是利用电磁波进行通信。电波和光波,都属于电磁波。


电磁波的功能特性,是由它的频率决定的。不同频率的电磁波,有不同的属性特点,从而有不同的用途。


例如,高频的γ射线,具有很大的杀伤力,可以用来治疗肿瘤。


我们目前主要使用 电波 进行通信。 当然,光波通信也在崛起,例如LiFi。



无线电波属于电磁波的一种,它的频率资源是有限的。


为了避免干扰和冲突,我们在电波这条 公路 上进一步划分 车道 ,分配给不同的对象和用途。


一直以来,我们主要是用 中频 ~超 高频 进行手机通信的。


例如经常说的“ GSM900 ”、“ CDMA800 ”,其实意思就是指,工作频段在900MHz的GSM,和工作频段在800MHz的CDMA。


目前全球主流的4G LTE技术标准,属于特高频和超高频。


我们国家主要使用超高频:



大家能看出来,随着1G、2G、3G、4G的发展,使用的电波频率是越来越高的。


这主要是因为, 频率越高,能使用的频率资源越丰富。频率资源越丰富,能实现的传输速率就越高。


更高 的频率→ 更多 的资源→ 更快 的速度


频率资源就像车厢,越高的频率,车厢越多,相同时间内能装载的信息就越多。


那么,5G使用的频率具体是多少呢?如下图所示:



5G的频率范围,分为两种:一种是6GHz以下,这个和目前我们的2/3/4G差别不算太大。还有一种,就很高了,在24GHz以上,目前,国际上主要使用28GHz进行试验。


如果按28GHz来算,根据前文我们提到的公式:



这个就是5G的第一个技术特点——
毫 米 波


最下面一行,就是 “毫米波”


既然,频率高这么好,你一定会问:“为什么以前我们不用高频率呢?”


不是不想用,是用不起。


电磁波的显著特点:频率越高,波长越短,越趋近于直线传播(绕射和穿墙能力越差)。 频率越高,在传播介质中的衰减也越大。


你看激光笔(波长635nm左右),射出的光是直的吧,挡住了就过不去了。


再看卫星通信和GPS导航(波长1cm左右),如果有遮挡物,就没信号了吧。


卫星那口大锅,必须校准瞄着卫星的方向,否则哪怕稍微歪一点,都会影响信号质量。


移动通信如果用了高频段,那么它最大的问题,就是 传输距离大幅缩短, 覆盖能力大幅减弱


覆盖同一个区域,需要的5G基站数量,将大大超过4G。



基站数量意味着什么?成本啊!


频率越低,网络建设就越省钱,竞争起来就越有利。这就是为什么,这些年,电信、移动、联通为了低频段而争得头破血流。


有的频段甚至被称为—— 黄金频段



这也是为什么,5G时代,运营商拼命怼设备商,希望基站降价。(如果真的上5G,按以往的模式,设备商就发大财了。)


所以,基于以上原因,在高频率的前提下,为了减轻网络建设方面的成本压力,5G必须寻找新的出路。


首先,就是微基站。
微 基 站


基站有两种,微基站和宏基站。看名字就知道,微基站很小,宏基站很大!


宏基站:


室外常见,建一个覆盖一大片


微基站:




还有更小的,巴掌那么大


其实,微基站现在就有不少,尤其是城区和室内,经常能看到。


以后,到了5G时代,微基站会更多,到处都会装上,几乎随处可见。


那么多基站在身边,会不会对人体造成影响?不会。


其实,和传统认知恰好相反,事实上,基站数量越多,辐射反而越小!


你想一下,冬天,一群人的房子里,一个大功率取暖器好,还是几个小功率取暖器好?


大功率方案▼


小功率方案▼


基站小,功率低,对大家都好。如果只采用一个大基站,离得近,辐射大,离得远,没信号,反而不好。


天线去哪了?



以前大哥大都有很长的天线,早期的手机也有突出来的小天线,为什么现在我们的手机都没有天线了?
其实,我们并不是不需要天线,而是我们的天线变小了。


根据天线特性,天线长度应与波长成正比,大约在1/10~1/4之间。
随着时间变化,我们手机的通信频率越来越高,波长越来越短,天线也就跟着变短啦!


毫米波通信,天线也变成毫米级。。。


这就意味着,天线完全可以塞进手机的里面,甚至可以塞很多根。。。


这就是5G的第三大杀手锏——


Massive MIMO(大规模多天线技术)


MIMO就是“多进多出”(Multiple-Input Multiple-Output),多根天线发送,多根天线接收。


在LTE时代,我们就已经有MIMO了,但是天线数量并不算多,只能说是初级版的MIMO。


到了5G时代,继续把MIMO技术发扬光大,现在变成了加强版的 Massive MIMO (Massive:大规模的,大量的)。



手机里面都能塞好多根天线,基站就更不用说了。


以前的基站,天线就那么几根:



5G时代,天线数量不是按根来算了,是按“阵”。。。“天线阵列”。。。一眼看去,要得密集恐惧症的节奏。。。




不过,天线之间的距离也不能太近。 因为天线特性要求,多天线阵列要求天线之间的距离保持在半个波长以上。如果距离近了,就会互相干扰,影响信号的收发


你是直的?还是弯的?


大家都见过灯泡发光吧? 其实,基站发射信号的时候,就有点像灯泡发光。信号是向四周发射的,对于光,当然是照亮整个房间,如果只是想照亮某个区域或物体,那么,大部分的光都浪费了。。。



基站也是一样,大量的能量和资源都浪费了。 我们能不能找到一只无形的手,把散开的光束缚起来呢? 这样既节约了能量,也保证了要照亮的区域有足够的光。答案是:可以。这就是——
波 束 赋 形
波束赋形

在基站上布设天线阵列,通过 对射频信号相位的控制 ,使得相互作用后的电磁波的波瓣变得非常狭窄,并指向它所提供服务的手机,而且能跟据手机的移动而转变方向。

这种空间复用技术,由全向的信号覆盖变为了精准指向性服务,波束之间不会干扰,在相同的空间中提供更多的通信链路,极大地提高基站的服务容量。



别收我钱,行不行?




在目前的移动通信网络中,即使是两个人面对面拨打对方的手机(或手机对传照片),信号都是通过基站进行中转的,包括控制信令和数据包。。。


而在5G时代,这种情况就不一定了。


5G的第五大特点——D2D,也就是Device to Device(设备到设备)。






请到「今天看啥」查看全文