专栏名称: 数据派THU
本订阅号是“THU数据派”的姊妹账号,致力于传播大数据价值、培养数据思维。
目录
相关文章推荐
软件定义世界(SDX)  ·  【PPT】集团企业数字化转型数据中台大数据分 ... ·  1 周前  
数据派THU  ·  PyTorch数据处理:torch.util ... ·  6 天前  
大数据与机器学习文摘  ·  突发!OpenAI发布最强模型o1:博士物理 ... ·  6 天前  
大数据文摘  ·  揭开OpenAI草莓模型神秘面纱——重塑大语 ... ·  1 周前  
51好读  ›  专栏  ›  数据派THU

Optuna发布 4.0 重大更新:多目标TPESampler自动化超参数优化速度提升显著

数据派THU  · 公众号  · 大数据  · 2024-09-16 17:00

正文

来源:Deephub Imba

本文约2200字,建议阅读5分钟

本文介绍了Optuna这个备受欢迎的超参数优化框架在近期发布了其第四个主要版本。



Optuna这个备受欢迎的超参数优化框架在近期发布了其第四个主要版本。自2018年首次亮相以来,Optuna不断发展,现已成为机器学习领域的重要工具。其用户社区持续壮大,目前已达到以下里程碑:

  • 10,000+ GitHub星标
  • 每月300万+ 下载量
  • 16,000+ 代码库使用
  • 5,000+ 论文引用
  • 18,000+ Kaggle的code使用


Optuna 4.0的开发重点包括:

  1. 用户间功能共享: 引入OptunaHub平台,便于共享新的采样器和可视化算法。
  2. 优化生成式AI和多样化计算环境:
  • 正式支持Artifact Store,用于管理生成的图像和训练模型。
  • 稳定支持NFS的JournalStorage,实现分布式优化。
  • 核心功能增强:
    • 多目标TPESampler的显著加速
    • 新Terminator算法的引入


    主要新特性


    OptunaHub: 功能共享平台


    OptunaHub (hub.optuna.org) 作为Optuna的官方功能共享平台正式发布。它提供了大量优化和可视化算法,使开发者能够轻松注册和分享他们的方法。这个平台的推出预计将加速功能开发,为用户提供更多样化的第三方功能。


    Artifact Store: 增强实验管理


    Artifact Store是一个专门用于管理优化过程中生成文件的功能。它可以有效处理:

    • 生成式AI输出的文本、图像和音频文件
    • 深度学习模型的大型快照文件

    这些文件可以通过Optuna Dashboard进行查看。Optuna 4.0稳定了文件上传API,并新增了artifact下载API。同时Dashboard新增了对JSONL和CSV文件的支持。


    JournalStorage: 支持NFS分布式优化


    JournalStorage是一种基于操作日志的新型存储方式,它简化了自定义存储后端的实现。其中,JournalFileBackend支持多种文件系统,包括NFS,可以实现跨节点的分布式优化。这对于难以设置传统数据库服务器的环境尤其有用。

    使用示例:

     import optuna from optuna.storages import JournalStorage from optuna.storages.journal import JournalFileBackend
    def objective(trial: optuna.Trial) -> float: ...
    storage = JournalStorage(JournalFileBackend("./journal.log")) study = optuna.create_study(storage=storage) study.optimize(objective)


    新Terminator算法


    为解决超参数过拟合问题,Optuna引入了新的Terminator算法。它可以在超参数过拟合之前终止优化过程,或者帮助用户可视化过拟合开始的时间点。新版本引入了预期最小模型遗憾(EMMR)算法,以支持更广泛的用例。

    约束优化增强


    Optuna 4.0增强了约束优化功能,特别是:

    • study.best_trial和study.best_trials现在保证满足约束条件
    • 核心算法(如TPESampler和NSGAIISampler)对约束优化的支持得到改进


    多目标TPESampler的加速


    多目标优化在机器学习中扮演着越来越重要的角色。例如,在翻译任务中,我们可能需要同时优化翻译质量(如BLEU分数)和响应速度。这种情况下,多目标优化比单目标优化更为复杂,通常需要更多的试验来探索不同目标之间的权衡。

    TPESampler(Tree-structured Pareto Estimation Sampler)是Optuna中一个强大的采样器,它在多目标优化中展现出了优秀的性能。与默认的NSGAIISampler相比,TPESampler具有以下优势:

    1. 更高的样本效率,特别是在1000-10000次试验的范围内
    2. 能够处理动态搜索空间
    3. 支持用户定义的类别距离

    在之前版本的TPESampler在处理大量试验时存在性能瓶颈,限制了其在大规模多目标优化中的应用。

    性能提升


    Optuna 4.0对多目标TPESampler进行了显著优化:

    • 三目标优化场景下,200次试验的速度提高了约300倍
    • 能够高效处理数千次试验的多目标优化

    这一改进主要通过优化以下算法实现:

    1. WFG(加权超体积增益)计算
    2. 非支配排序
    3. HSSP(超体积子集选择问题)


    TPESampler的工作原理


    TPESampler基于树形Pareto估计(TPE)算法。在多目标优化中,它的工作流程如下:

    1. 将观察到的试验分为非支配解和支配解两组
    2. 为每个参数构建两个概率分布:一个基于非支配解,另一个基于支配解
    3. 使用这些分布来指导下一个试验点的选择,倾向于选择可能产生非支配解的参数值

    这种方法允许算法在探索(寻找新的有希望的区域)和利用(优化已知的好区域)之间取得平衡。

    使用TPESampler进行多目标优化示例


    以下是使用TPESampler进行多目标优化的简单示例:

     import optuna
    def objective(trial): x = trial.suggest_float("x", -5, 5) y = trial.suggest_float("y", -5, 5) objective_1 = x**2 + y**2 objective_2 = (x - 2)**2 + (y - 2)**2 return objective_1, objective_2
    sampler = optuna.samplers.TPESampler() study = optuna.create_study(sampler=sampler, directions=["minimize", "minimize"]) study.optimize(objective, n_trials=100)

    在这个例子中,定义了一个具有两个目标的优化问题。TPESampler被用作采样器,study被设置为最小化两个目标。

    基准测试结果


    测试环境:

    • Ubuntu 20.04
    • Intel Core i7-1255U CPU
    • Python 3.9.13
    • NumPy 2.0.0

    测试结果如图所示:

    可以看到:

    • Optuna 4.0中双目标优化性能接近单目标优化
    • 三目标优化在200次试验时,运行时间从约1,000秒减少到约3秒
    • 新版本在3-5个目标的情况下仍保持高效


    TPESampler vs. NSGAIISampler


    虽然NSGAIISampler是Optuna中默认的多目标优化采样器,但TPESampler在某些情况下可能更为有效:

    1. 大规模优化:在1000-10000次试验的范围内,TPESampler通常表现更好
    2. 复杂搜索空间:对于具有条件参数或动态搜索空间的问题,TPESampler更为灵活
    3. 高维参数空间:TPESampler在处理高维参数空间时通常更有效

    选择合适的采样器还应该基于具体问题和计算资源。可以尝试两种采样器,比较它们在特定问题上的性能。

    结论与展望


    Optuna 4.0通过引入新功能和优化现有算法,大幅提升了其在复杂优化任务和多样化计算环境中的适用性。特别是多目标TPESampler的性能提升,为处理更复杂的优化问题铺平了道路。

    TPESampler的显著加速使得Optuna能够更有效地处理大规模多目标优化问题。这一改进对于需要同时优化多个目标的复杂机器学习任务(如大型语言模型的训练)具有重要意义。

    在官方的发布中Optuna团队还提到后面的工作:

    1. 扩展问题设置的适用范围
    2. 通过OptunaHub支持更多创新算法
    3. 进一步优化性能和用户体验
    4. 改进TPESampler和其他采样器在更广泛场景下的性能

    研发团队鼓励用户尝试新版本的多目标TPESampler,Optuna有望在未来版本中提供更强大、更灵活的超参数优化解决方案。

    编辑:王菁



    关于我们

    数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。



    新浪微博:@数据派THU

    微信视频号:数据派THU

    今日头条:数据派THU