专栏名称: Java专栏
一个Java、Python、数据库、中间件、业内资讯、面试、学习资源等干货的知识分享社区。
目录
51好读  ›  专栏  ›  Java专栏

图解 ElasticSearch 原理

Java专栏  · 公众号  ·  · 2021-01-10 12:20

正文


来源:Richaaaard

Elasticsearch 是一款功能强大的开源分布式搜索与数据分析引擎,目前国内诸多互联网大厂都在使用,包括携程、滴滴、今日头条、饿了么、360 安全、小米、vivo 等。


除了搜索之外,结合 Kibana、Logstash、Beats,Elastic Stack 还被广泛运用在大数据近实时分析领域,包括日志分析、指标监控、信息安全等多个领域。


它可以帮助你探索海量结构化、非结构化数据,按需创建可视化报表,对监控数据设置报警阈值,甚至通过使用机器学习技术,自动识别异常状况。


今天,我们先自上而下,后自底向上的介绍ElasticSearch的底层工作原理,并试图回答以下问题:

  • 为什么我的搜索 *foo-bar* 无法匹配 foo-bar ?

  • 为什么增加更多的文件会压缩索引(Index)?

  • 为什么 ElasticSearch 占用很多内存?


图解 ElasticSearch


elasticsearch 版本: elasticsearch-2.2.0。

①云上的集群


如下图:

②集群里的盒子


云里面的每个白色正方形的盒子代表一个节点——Node。

③节点之间


在一个或者多个节点直接,多个绿色小方块组合在一起形成一个 ElasticSearch 的索引。

④索引里的小方块


在一个索引下,分布在多个节点里的绿色小方块称为分片——Shard。

⑤Shard=Lucene Index


一个 ElasticSearch 的 Shard 本质上是一个 Lucene Index。

Lucene 是一个 Full Text 搜索库(也有很多其他形式的搜索库),ElasticSearch 是建立在 Lucene 之上的。


接下来的故事要说的大部分内容实际上是 ElasticSearch 如何基于 Lucene 工作的。


图解 Lucene



Mini 索引:Segment


在 Lucene 里面有很多小的 Segment,我们可以把它们看成 Lucene 内部的 mini-index。


Segment 内部


Segment 内部有着许多数据结构,如上图:

  • Inverted Index

  • Stored Fields

  • Document Values

  • Cache



最最重要的 Inverted Index


如下图:

Inverted Index 主要包括两部分:

  • 一个有序的数据字典 Dictionary(包括单词 Term 和它出现的频率)。

  • 与单词 Term 对应的 Postings(即存在这个单词的文件)。


当我们搜索的时候,首先将搜索的内容分解,然后在字典里找到对应 Term,从而查找到与搜索相关的文件内容。
①查询“the fury”

如下图:
②自动补全(AutoCompletion-Prefix)

如果想要查找以字母“c”开头的字母,可以简单的通过二分查找(Binary Search)在 Inverted Index 表中找到例如“choice”、“coming”这样的词(Term)。
③昂贵的查找

如果想要查找所有包含“our”字母的单词,那么系统会扫描整个 Inverted Index,这是非常昂贵的。

在此种情况下,如果想要做优化,那么我们面对的问题是如何生成合适的 Term。


④问题的转化

如下图:

对于以上诸如此类的问题,我们可能会有几种可行的解决方案:

  • * suffix→xiffus * 如果我们想以后缀作为搜索条件,可以为 Term 做反向处理。

  • (60.6384, 6.5017)→ u4u8gyykk,对于 GEO 位置信息,可以将它转换为 GEO Hash。

  • 123→{1-hundreds, 12-tens, 123},对于简单的数字,可以为它生成多重形式的 Term。


⑤解决拼写错误

一个 Python 库为单词生成了一个包含错误拼写信息的树形状态机,解决拼写错误的问题。

⑥Stored Field 字段查找


当我们想要查找包含某个特定标题内容的文件时,Inverted Index 就不能很好的解决这个问题,所以 Lucene 提供了另外一种数据结构 Stored Fields 来解决这个问题。


本质上,Stored Fields 是一个简单的键值对 key-value。默认情况下,ElasticSearch 会存储整个文件的 JSON source。

⑦Document Values 为了排序,聚合


即使这样,我们发现以上结构仍然无法解决诸如:排序、聚合、facet,因为我们可能会要读取大量不需要的信息。


所以,另一种数据结构解决了此种问题:Document Values。这种结构本质上就是一个列式的存储,它高度优化了具有相同类型的数据的存储结构。

为了提高效率,ElasticSearch 可以将索引下某一个 Document Value 全部读取到内存中进行操作,这大大提升访问速度,但是也同时会消耗掉大量的内存空间。


总之,这些数据结构 Inverted Index、Stored Fields、Document Values 及其缓存,都在 segment 内部。


搜索发生时


搜索时,Lucene 会搜索所有的 Segment 然后将每个 Segment 的搜索结果返回,最后合并呈现给客户。


Lucene 的一些特性使得这个过程非常重要:

  • Segments 是不可变的(immutable): Delete?当删除发生时,Lucene 做的只是将其标志位置为删除,但是文件还是会在它原来的地方,不会发生改变。

    Update?所以对于更新来说,本质上它做的工作是:先删除,然后重新索引(Re-index)。

  • 随处可见的压缩: Lucene 非常擅长压缩数据,基本上所有教科书上的压缩方式,都能在 Lucene 中找到。

  • 缓存所有的所有: Lucene 也会将所有的信息做缓存,这大大提高了它的查询效率。


缓存的故事


当 ElasticSearch 索引一个文件的时候,会为文件建立相应的缓存,并且会定期(每秒)刷新这些数据,然后这些文件就可以被搜索到。







请到「今天看啥」查看全文