大数据离线部分
1:HDFS的架构部分及工作原理
NameNode:负责管理元素据,将信息保存在内存中
DataNode:保存数据,以块的形式保存。启动后需要定时的向NameNode发送心跳,报告自身存储的块信息
2:HDFS的上传过程
3:HDFS的下载
4:NameNode的元数据安全机制
以记日志的形式将每一个操作写在磁盘的日志文件中,然后借助Secondary
NameNode的checkpoint功能将fsImage和日志进行合并。
重点:记住checkpoint工作过程
5:如果服务器的磁盘坏了,如何挽救数据?
配置多个dfs.namenode.name.dir 路径为本地磁盘路径和nfs网络磁盘路径。
6:hdfs集群中,受到拓展瓶颈的是NameNode还是Datanode?
是NameNode,因为DataNode不够可以很方便的水平拓展,而工作的NameNode只有一个,他的存储能力完全取决于他的内存,所以。。。。,
但是其实NameNode一般不会成为瓶颈,因为一个块记录的元数据信息大小约为150B,如果每一个块大小为128M的话,那么15G的NameNode内存可以存储12PB的数据。
7:datanode明明已启动,但是集群中的可用datanode列表中就是没有,怎么办?
在Data目录下,已经有其他NameNode的标记,这个NameNode不认。
8:文件下载到window中,为什么会报错?
默认使用操作系统的内核进行磁盘数据的写入,也就是需要一个winutil的工具,而默认的安装包中不提供,所以需要编译源码或者设置为使用Java的进行磁盘写入。
9:hadoop的HA(高可用)
1:MapReduce中,fileinputformat -> map -> shuffle -> reduce的过程
2:MapReduce中,job提交的过程
3:自定义Javabean作为数据,需要extends writableandCompareble接口。
4:自定义outputformat,进行不同方向的处理。
5:MapReduce的一些应用场景
1、排序并且求 TOPOne 和TOPN
2、求某个用户前几个月的总流量,并且选择出流量前几名的用户。
3、reduce端的join
4、map端join
5、求共同好友问题
1:什么是hive?
一个将sql转化为MapReduce程序的、单机版的、数据仓库工具。通过关系型数据库(mysql等)来记录表元数据信息。真正的数据在HDFS中。
Hive利用HDFS存储数据,利用MapReduce查询分析数据
hive2.0版本之后,都是基于Spark处理了。
安装的时候,需要注意jline的版本冲突。
2:如何启动?
3:执行的sql的形式
hiveshell、 hive -e “sql命令”、 hive -f “一个包含着很多SQL语句的文件”
4:hive的创建表操作
内部表、外部表 就差连个关键字(external 和 location)
分区表、分桶表
5:hive查询表
join
动态分区
分组查询
复杂的那个累计报表操作。
6:hive自定义函数(UDF)
利用hadoop的map端进行数据的并行导入导出。
安装在HDFS上,配置HDFS的路径和Hive路径即可。
1:agent:sources 、 channel 、 sinks
2:sources:exec、spooldir、arvo (加一个拦截器)
3:channel:men 、 disk
4:sinks:arvo 、HDFS、kafka
5:flume安装在数据源这一边。
6:如何自定义拦截器?
7:如何实现flume的多级连接,以及如何实现高可用?
1 :
storm是一个实时的计算框架,只负责计算,不负责存储。它通过spout的open和nextTuple方法去外部存储系统(kafka)获取数据,然后传送给后续的bolt处理,
bolt利用prepare和execute方法处理完成后,继续往后续的bolt发送,或者根据输出目录,把信息写到指定的外部存储系统中。
2:storm的数据不丢失原理
交叉收到的数据做异或元算中间结果不为0的原理。
3:设置spout_max_pending (可以限流)
4:jstorm的通信机制,每一个:worker都有一个接受线程和输出线程
5:storm的架构分析
nimbus、zookeeper、supervisor、worker
nimbus:接受任务请求,并且进行任务的分发,最后写入到zookeeper中。
supervisor:接受nimbus的任务调度,然后启动和管理属于自己的worker进程,supervisor是可以快速失败的,不影响任务的执行。
我们可以写一个脚本来监控supervisor的进程,如果不存在了,立马启动,就可以了。
worker:启动spoutTask、boltTask等等任务,去执行业务逻辑。
6:storm的编程模型
topology:由spout和bolt组成的一个流程图。他描述着本次任务的信息
7:storm的tuple结构,它里面有两个数据结构,一个list、一个是map
list:记录着信息
map:记录着每个字段对应的下表,通过找到下边再去上面的list中找数据。
8:storm任务提交的过程
1、kafka和jms的区别
2、kafka的topic理解
topic是逻辑存在的,真正在物理磁盘中的体现是partitioner,一个topic可以对应多个partition,不同的paritition存放在不同的broker中,以提高并发存储能力。
3、partitioner
partition是topic信息在屋里存储中的具体体现,在磁盘中它是一个文件夹,名字是topic名字_partition编号。
4、segment
每个partition对对应多个segment文件,默认大小是1G,为了快速定位到指定的offset位置。
5、kafka为什么这么快
1/使用了操作系统使用的pagecache缓存,缓存大,缓存到一定量的数据时,以顺序写入的方 式写入到磁盘中。
因为:磁盘顺序写入的方式非常的快=>600MB/s,而随机存储只有100kb/s左右。
2/使用操作系统的sendfile技术。在读取信息发送的时候,不需要经过用户区,而是在os端直接发送,可以减少很多步骤。
6、为什么要多个partitioner
7、为什么每个partitioner需要切分为多个segment文件
8、kafka的HA
对partitioner分区进行备份,利用zookeeper的选举机制选择leader。数据的生产存储和消费读取都是有leader负责,其他的replicatition只是负责备份而已。
9、kafka如何用shell脚本来讲一个文件读写进去?
10、kafka如何用JavaAPI实现生产者和消费者?
scala回顾
1、如何定义变量
2、如何定义函数、方法,如何在将函数作为方法的参数传入进去?
3、条件判断语句,循环控制语句
4、集合操作:Array、list、set、tuple、map
(注意:可变和不可变的区别)
5、样例类的使用
6、trit、抽象类的使用
7、主构造器和辅助构造器的使用
8、scala的高级特性
高阶函数:作为值得函数、匿名函数、闭包、柯里化
隐式转换:一个类对象中,如果他没有摸一个功能,但是我们有想要它实现,可以使用英式转换的方式。
使用:
import MyPredef._9、Actor
写起来像多线程,用起来像socket10、akka
ActorSystem.actorOf()创建一个Actor,
创建的同时,就是执行Actor中的prestart方法,去初始化一些信息。
1、SparkRDD叫做:弹性分布式数据集,其实就是一个类,用来描述:任务的数据从哪里读取、用那个算进行计算、得到的结果有存放在哪里、RDD之间的依赖关系是款以来还是窄依赖
2、RDD有五个特点
一系列分区
每个算子作用在每个分区上
一系列依赖关系
最有位置(如果从HDFS上读取数据)
3、RDD的两种算子Transformation和Action
Transformation是懒加载,只是定义了这个算子的任务,该如何做,但是还没有做。
Action是立即执行,当执行到Action时,会触发DAGSchudle切分stage,切分完成后,有TaskScheduler将任务通过DriverActor发送到executor中执行。
4、RDD的几个复杂的Transformation
第一个参数表示分组后的第一个值如何处理,
第二个参数表示后续的值和前一个值如何处理,
第三个参数表示,map端处理完成后,在reduce端如何对这些list进行处理。
->aggregate(“初始量,可以是String也可以是int”)(第一个func,第二个func)
初始量作用于没一个分区,第一个func作用于map端,第二个func作用于reduce端。
->reduceByKey(_+_) 作用于map端和reduce端,可以进行局部聚合。
其实reduceByKey和aggregateByKey在底层都调用了combineByKey方法来实现响应的功能。
->mapPartitions
对每一个分区进行操作,直接在里面使用匿名函数即可
5、RDD自定义Partitioner
6、自定义排序规则 ==>定义一个
1、Spark整合Hive和HDFS 只需要将Hive的hive-site.xml ;
hadoop的core-site.xml和hdfs-site.xml拷贝到Spark的conf目录下即可。Spark就知道如何使用hive的表,同时也知道去哪个NameNode哪里都数据了。
2、DataFrame是什么?
是一个分布式数据集,对RDD的封装。RDD有的方法他基本上都有
3、DataFrame如何创建?
三种方式:->RDD + case class
->RDD + structType
->sqlContext.read.format.options(Map())
4、DataFrame首先需要注册成表结构之后才可以使用sqlContext来操作。
dF.registerTempTable(“person”)
5、使用sqlContext ==> 返回一个DataFrame
sqlContext.sql(“select * from person”)
6、DataFrame将数据写入到HDFS或者mysql中
网络大数据
(ID:raincent_com)
网络大数据 www.raincent.com
由清华CDN实验室于2011年创办,
致力于打造中国最专业的网络大数据科学门户网站。
识别二维码,关注网络大数据