专栏名称: 狗厂
目录
51好读  ›  专栏  ›  狗厂

[英]通过编写测试来学习Go的反射

狗厂  · 掘金  ·  · 2018-07-12 06:19

正文

This is the 9th post taken from a WIP project called Learn Go by writing Tests the aim of which is to get a familiarity with Go and learn techniques around TDD

Reflection

From twitter

golang challenge: write a function walk(x interface{}, fn func(string)) which takes a struct x and calls fn for all strings fields found inside.difficulty level: recursively.

To do this we will need to use reflection

Reflection in computing is the ability of a program to examine its own structure, particularly through types; it's a form of metaprogramming. It's also a great source of confusion.

From The Go Blog: Reflection

What is interface ?

We have enjoyed the type-safety that Go has offered us in terms of functions that work with known types, such as string , int and our own types like BankAccount .

This means that we get some documentation for free and the compiler will complain if you try and pass the wrong type to a function.

You may come across scenarios though where you want to write a function where you don't know the type at compile time.

Go lets us get around this with the type interface{} which you can think of as just any type.

So walk(x interface{}, fn func(string)) will accept any value for x .

So why not use interface for everything and have really flexible functions?

  • As a user of a function that takes interface you lose type safety. What if you meant to pass Foo.bar of type string into a function but instead did Foo.baz which is an int ? The compiler wont be able to inform you of your mistake. You also have no idea what you're allowed to pass to a function. Knowing that a function takes a UserService for instance is very useful.
  • As a writer of such a function you have to be able to inspect anything that has been passed to you and try and figure out what the type is and what you can do with it. This is done using reflection . This can be quite clumsy and difficult to read and is generally less performant (as you have to do checks at runtime).

In short only use reflection if you really need to.

If you want polymorphic functions, consider if you could design it around an interface (not interface , confusingly) so that users can use your function with multiple types if they implement whatever methods you need for your function to work.

Our function will need to be able to work with lots of different things. As always we'll take an iterative approach, writing tests for each new thing we want to support and refactoring along the way until we're done.

Write the test first

We'll want to call our function with a struct that has a string field in it ( x ).Then we can spy on the function ( fn ) passed in to see if it is called.

func TestWalk(t *testing.T) {

    expected := "Chris"
    var got []string

    x := struct {
        Name string
    }{expected}

    walk(x, func(input string) {
        got = append(got, input)
    })

    if len(got) != 1 {
        t.Errorf("wrong number of function calls, got %d want %d", len(got), 1)
    }
}
  • We want to store a slice of strings ( got ) which stores which strings were passed into fn by walk . Often in previous chapters we have made dedicated types for this to spy on function/method invocations but in this case we can just pass in an anonymous function for fn that closes over got
  • We use an anonymous struct with a Name field of type string to go for the simplest "happy" path.
  • Finally call walk with x and the spy and for now just check the length of got , we'll be more specific with our assertions once we've got something very basic working.

Try to run the test

./reflection_test.go:21:2: undefined: walk

Write the minimal amount of code for the test to run and check the failing test output

We need to define walk

func walk(x interface{}, fn func(input string)) {

}

Try and run the test again

=== RUN   TestWalk
-------- FAIL: TestWalk (0.00s)
    reflection_test.go:19: wrong number of function calls, got 0 want 1
FAIL

Write enough code to make it pass

We can call the spy with any string to make this pass.

func walk(x interface{}, fn func(input string)) {
    fn("I still can't believe South Korea beat Germany 2-0 to put them last in their group")
}

The test should now be passing. The next thing we'll need to do is make a more specific assertion on what our fn is being called with.

Write the test first

Add the following to the existing test to check the string passed to fn is correct

if got[0] != expected {
    t.Errorf("got '%s', want '%s'", got[0], expected)
}

Try to run the test

=== RUN   TestWalk
-------- FAIL: TestWalk (0.00s)
    reflection_test.go:23: got 'I still can't believe South Korea beat Germany 2-0 to put them last in their group', want 'Chris'
FAIL

Write enough code to make it pass

func walk(x interface{}, fn func(input string)) {
    val := reflect.ValueOf(x)
    field := val.Field(0)
    fn(field.String())
}

This code is very unsafe and very naive but remember our goal when we are in "red" (the tests failing) is to write the smallest amount of code possible. We then write more tests to address our concerns.

We need to use reflection to have a look at x and try and look at its properties.

The reflect package has a function ValueOf which returns us a Value of a given variable. This has ways for us to inspect a value, including its fields which we use on the next line.

We then make some very optimistic assumptions about the the value passed in

  • We look at the first and only field, there may be no fields at all which would cause a panic
  • We then call String() which returns the underlying value as a string but we know it would be wrong if the field was something other than a string.

Refactor

Our code is passing for the simple case but we know our code has a lot of shortcomings.

We're going to be writing a number of tests where we pass in different values and checking the array of strings that fn was called with.

We should refactor our test into a table based test to make this easier to continue testing new scenarios.

func TestWalk(t *testing.T) {

    cases := []struct{
        Name string
        Input interface{}
        ExpectedCalls []string
    } {
        {
            "Struct with one string field",
            struct {
                Name string
            }{ "Chris"},
            []string{"Chris"},
        },
    }

    for _, test := range cases {
        t.Run(test.Name, func(t *testing.T) {
            var got []string
            walk(test.Input, func(input string) {
                got = append(got, input)
            })

            if !reflect.DeepEqual(got, test.ExpectedCalls) {
                t.Errorf("got %v, want %v", got, test.ExpectedCalls)
            }
        })
    }
}

Now we can easily add a scenario to see what happens if we have more than one string field

Write the test first

Add the following scenario to the cases .

{
    "Struct with two string fields",
    struct {
        Name string
        City string
    }{"Chris", "London"},
    []string{"Chris", "London"},
}

Try to run the test

=== RUN   TestWalk/Struct_with_two_string_fields
    --- FAIL: TestWalk/Struct_with_two_string_fields (0.00s)
        reflection_test.go:40: got [Chris], want [Chris London]

Write enough code to make it pass

func walk(x interface{}, fn func(input string)) {
    val := reflect.ValueOf(x)

    for i:=0; i<val.NumField(); i++ {
        field := val.Field(i)
        fn(field.String())
    }
}

value has a method NumField which returns the number of fields in the value. This lets us iterate over the fields and call fn which passes our test.

Refactor

It doesn't look like there's any obvious refactors here that would improve the code so let's press on

The next shortcoming in walk is that it assumes every field is a string . Let's write a test for this scenario

Write the test first

Add the following case

{
    "Struct with non string field",
    struct {
        Name string
        Age  int
    }{"Chris", 33},
    []string{"Chris"},
},

Try to run the test

=== RUN   TestWalk/Struct_with_non_string_field
    --- FAIL: TestWalk/Struct_with_non_string_field (0.00s)
        reflection_test.go:46: got [Chris <int Value>], want [Chris]

Write enough code to make it pass

We need to check that the type of the field is a string .

func walk(x interface{}, fn func(input string)) {
    val := reflect.ValueOf(x)

    for i := 0; i < val.NumField(); i++ {
        field := val.Field(i)

        if field.Kind() == reflect.String {
            fn(field.String())
        }
    }
}

We can do that by checking its Kind

Refactor

Again it looks like the code is reasonable enough for now.

The next scenario is what if it isn't a "flat" struct ? In other words what happens if we have a struct with some nested fields?

Write the test first

We have been using the anonymous struct syntax to declare types ad-hocly for our tests so we could continue to do that like so







请到「今天看啥」查看全文