专栏名称: Java专栏
一个Java、Python、数据库、中间件、业内资讯、面试、学习资源等干货的知识分享社区。
目录
相关文章推荐
51好读  ›  专栏  ›  Java专栏

用图讲解 ElasticSearch 搜索原理,你就明白了!

Java专栏  · 公众号  ·  · 2020-10-22 12:20

正文

注意 文末有最新 Java实战 项目 面试题

先自上而下,后自底向上的介绍ElasticSearch的底层工作原理,试图回答以下问题:


  • 为什么我的搜索 foo-bar 无法匹配 _foo-bar_ ?
  • 为什么增加更多的文件会压缩索引(Index)?
  • 为什么ElasticSearch占用很多内存?


图解ElasticSearch


云上的集群


集群里的盒子

云里面的每个白色正方形的盒子代表一个节点——Node。


节点之间

在一个或者多个节点直接,多个绿色小方块组合在一起形成一个ElasticSearch的索引。


索引里的小方块

在一个索引下,分布在多个节点里的绿色小方块称为分片——Shard。


Shard=Lucene Index

一个ElasticSearch的Shard本质上是一个Lucene Index。


Lucene是一个Full Text搜索库(也有很多其他形式的搜索库),ElasticSearch是建立在Lucene之上的。接下来的故事要说的大部分内容实际上是ElasticSearch如何基于Lucene工作的。

图解Lucene


Mini索引——segment

在Lucene里面有很多小的segment,我们可以把它们看成Lucene内部的mini-index。


Segment内部


有着许多数据结构

  • Inverted Index
  • Stored Fields
  • Document Values
  • Cache


最最重要的I nverted Index


Inverted Index主要包括两部分:

  1. 一个有序的数据字典Dictionary(包括单词Term和它出现的频率)。
  2. 与单词Term对应的Postings(即存在这个单词的文件)。

当我们搜索的时候,首先将搜索的内容分解,然后在字典里找到对应Term,从而查找到与搜索相关的文件内容。


查询“the fury”


自动补全(AutoCompletion-Prefix)

如果想要查找以字母“c”开头的字母,可以简单的通过二分查找(Binary Search)在Inverted

Index表中找到例如“choice”、“coming”这样的词(Term)。


昂贵的查找

如果想要查找所有包含“our”字母的单词,那么系统会扫描整个Inverted Index,这是非常昂贵的。


在此种情况下,如果想要做优化,那么我们面对的问题是如何生成合适的Term。

问题的转化


对于以上诸如此类的问题,我们可能会有几种可行的解决方案:

  • suffix -> xiffus
    如果我们想以后缀作为搜索条件,可以为Term做反向处理。
  • (60.6384, 6.5017) -> u4u8gyykk
    对于GEO位置信息,可以将它转换为GEO Hash。
  • 123 -> {1-hundreds, 12-tens, 123}

对于简单的数字,可以为它生成多重形式的Term。

解决拼写错误

一个  Python库

https://pypi.python.org/pypi/misspellings

为单词生成了一个包含错误拼写信息的树形状态机,解决拼写错误的问题。


Stored Field字段查找

当我们想要查找包含某个特定标题内容的文件时,Inverted Index就不能很好的解决这个问题,所以Lucene提供了另外一种数据结构Stored
Fields来解决这个问题。本质上,Stored Fields是一个简单的键值对key-

value。默认情况下,ElasticSearch会存储整个文件的JSON source。


Document Values为了排序,聚合
即使这样,我们发现以上结构仍然无法解决诸如:排序、聚合、facet,因为我们可能会要读取大量不需要的信息。

所以,另一种数据结构解决了此种问题:Document Values。这种结构本质上就是一个列式的存储,它高度优化了具有相同类型的数据的存储结构。


为了提高效率,ElasticSearch可以将索引下某一个Document Value全部读取到内存中进行操作,这大大提升访问速度,但是也同时会消耗掉大量的内存空间。

总之,这些数据结构Inverted Index、Stored Fields、Document Values及其缓存,都在segment内部。

搜索发生时


搜索时,Lucene会搜索所有的segment然后将每个segment的搜索结果返回,最后合并呈现给客户。

Lucene的一些特性使得这个过程非常重要:

  • Segments是不可变的(immutable)
    • Delete? 当删除发生时,Lucene做的只是将其标志位置为删除,但是文件还是会在它原来的地方,不会发生改变
    • Update? 所以对于更新来说,本质上它做的工作是:先 删除 ,然后 重新索引(Re-index)
  • 随处可见的压缩
    Lucene非常擅长压缩数据,基本上所有教科书上的压缩方式,都能在Lucene中找到。
  • 缓存所有的所有

Lucene也会将所有的信息做缓存,这大大提高了它的查询效率。

缓存的故事


当ElasticSearch索引一个文件的时候,会为文件建立相应的缓存,并且会定期(每秒)刷新这些数据,然后这些文件就可以被搜索到。






请到「今天看啥」查看全文