专栏名称: Java知音
专注于Java,推送技术文章,热门开源项目等。致力打造一个有实用,有情怀的Java技术公众号!
目录
相关文章推荐
体验进阶  ·  哈哈哈,设计师偷懒必备! ·  18 小时前  
庞门正道  ·  被气笑了,这些AI出图。 ·  4 天前  
设计诗designer  ·  carola vannini丨现代设计下的优雅 ·  2 天前  
字体设计  ·  从日式海报上学文字排版 ·  5 天前  
51好读  ›  专栏  ›  Java知音

公司新来一个技术总监:禁止将 UUID 和雪花 ID 列入主键选型!

Java知音  · 公众号  · 设计 数据库  · 2025-03-21 10:05

正文

图片

在 mysql 中设计表的时候,mysql 官方推荐不要使用 uuid 或者不连续不重复的雪花 id(long 形且唯一,单机递增),而是推荐连续自增的主键 id,官方的推荐是 auto_increment ,那么为什么不建议采用 uuid,使用 uuid 究竟有什么坏处?

本篇博客我们就来分析这个问题,探讨一下内部的原因。

本篇博客的目录

  • mysql 程序实例
  • 使用 uuid 和自增 id 的索引结构对比
  • 总结

一、mysql 和程序实例

1.1.要说明这个问题,我们首先来建立三张表

分别是 user_auto_key user_uuid user_random_key ,分别表示自动增长的主键,uuid 作为主键,随机 key 作为主键,其它我们完全保持不变。

根据控制变量法,我们只把每个表的主键使用不同的策略生成,而其他的字段完全一样,然后测试一下表的插入速度和查询速度:

注:这里的随机 key 其实是指用雪花算法算出来的前后不连续不重复无规律的 id:一串 18 位长度的 long 值

id 自动生成表:

用户 uuid 表:

随机主键表:

1.2.光有理论不行,直接上程序,使用 spring 的 jdbcTemplate 来实现增查测试:

技术框架: springboot+jdbcTemplate+junit+hutool ,程序的原理就是连接自己的测试数据库,然后在相同的环境下写入同等数量的数据,来分析一下 insert 插入的时间来进行综合其效率,为了做到最真实的效果,所有的数据采用随机生成,比如名字、邮箱、地址都是随机生成。






    
package com.wyq.mysqldemo;
import cn.hutool.core.collection.CollectionUtil;
import com.wyq.mysqldemo.databaseobject.UserKeyAuto;
import com.wyq.mysqldemo.databaseobject.UserKeyRandom;
import com.wyq.mysqldemo.databaseobject.UserKeyUUID;
import com.wyq.mysqldemo.diffkeytest.AutoKeyTableService;
import com.wyq.mysqldemo.diffkeytest.RandomKeyTableService;
import com.wyq.mysqldemo.diffkeytest.UUIDKeyTableService;
import com.wyq.mysqldemo.util.JdbcTemplateService;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.util.StopWatch;
import java.util.List;
@SpringBootTest
class MysqlDemoApplicationTests {

    @Autowired
    private JdbcTemplateService jdbcTemplateService;

    @Autowired
    private AutoKeyTableService autoKeyTableService;

    @Autowired
    private UUIDKeyTableService uuidKeyTableService;

    @Autowired
    private RandomKeyTableService randomKeyTableService;


    @Test
    void testDBTime() {

        StopWatch stopwatch = new StopWatch("执行sql时间消耗");


        /**
         * auto_increment key任务
         */

        final String insertSql = "INSERT INTO user_key_auto(user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?)";

        List insertData = autoKeyTableService.getInsertData();
        stopwatch.start("自动生成key表任务开始");
        long start1 = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql, insertData, false);
            System.out.println(insertResult);
        }
        long end1 = System.currentTimeMillis();
        System.out.println("auto key消耗的时间:" + (end1 - start1));

        stopwatch.stop();


        /**
         * uudID的key
         */

        final String insertSql2 = "INSERT INTO user_uuid(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";

        List insertData2 = uuidKeyTableService.getInsertData();
        stopwatch.start("UUID的key表任务开始");
        long begin = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql2, insertData2, true);
            System.out.println(insertResult);
        }
        long over = System.currentTimeMillis();
        System.out.println("UUID key消耗的时间:" + (over - begin));

        stopwatch.stop();


        /**
         * 随机的long值key
         */

        final String insertSql3 = "INSERT INTO user_random_key(id,user_id,user_name,sex,address,city,email,state) VALUES(?,?,?,?,?,?,?,?)";
        List insertData3 = randomKeyTableService.getInsertData();
        stopwatch.start("随机的long值key表任务开始");
        Long start = System.currentTimeMillis();
        if (CollectionUtil.isNotEmpty(insertData)) {
            boolean insertResult = jdbcTemplateService.insert(insertSql3, insertData3, true);
            System.out.println(insertResult);
        }
        Long end = System.currentTimeMillis();
        System.out.println("随机key任务消耗时间:" + (end - start));
        stopwatch.stop();


        String result = stopwatch.prettyPrint();
        System.out.println(result);
    }

1.3.程序写入结果

user_key_auto 写入结果:

user_random_key 写入结果:

user_uuid 表写入结果:

1.4.效率测试结果

在已有数据量为 130W 的时候:我们再来测试一下插入 10w 数据,看看会有什么结果:

可以看出在数据量 100W 左右的时候,uuid 的插入效率垫底,并且在后序增加了 130W 的数据,uudi 的时间又直线下降。

时间占用量总体可以得出的效率排名为: auto_key>random_key>uuid







请到「今天看啥」查看全文