专栏名称: 微软科技
微软中国的认证公众号,分享微软产品资讯,技术方案,成功案例,行业视野,精彩活动。第一时间获取微软在云计算,大数据,移动,企业社交商务等话题的解决方案。
目录
相关文章推荐
新浪科技  ·  【#D-Wave宣布新的量子计算突破# ... ·  4 小时前  
新浪科技  ·  #副总裁称极氪3年多走了很多弯路#【#极氪副 ... ·  10 小时前  
新浪科技  ·  【#啄木鸟抽佣比例高达4成##雷军姚劲波投资 ... ·  14 小时前  
51好读  ›  专栏  ›  微软科技

AI专题 | 培养一个人类医生至少需要八年,那么人工智能呢?

微软科技  · 公众号  · 科技媒体  · 2016-12-26 18:03

正文


微软科技携手微软亚洲研究院推出人工智能的趋势和商业应用系列专题文章,点击微软科技底部菜单栏“ 发现+ / 人工智能 ”专栏获取更多精 彩内容。如对AI等学术研究感兴趣的小伙伴请搜索关注“ 微软研究院AI头条 ”公众号。




一位普通患者的非典型住院之旅


去年,微软亚洲研究院的资深研究员闫峻在北京一家医院做了一场外科手术,手术前后,他在医院住了十天。但当他躺在病床上,想安安静静看上几本书,或者干脆好好补个长觉时,却不断被各种嘈杂的声音打扰。如果你也曾在医院待过一两天,你几乎不会错过这样的场景:忙不过来的医生和不断追问的家属,手忙脚乱。

闫峻躺在病床上,研究者的好奇心让他试图用技术的眼光寻找原因。闫峻分析:“医生资源十分有限,他没有办法将他的知识表达给所有的患者,而由于信息不对称的存在,患者是安全感不够的。患者需要得到医生的专业解释和帮助,这样心里才会有底。”

“提高生产力”这个概念几乎对于每一个微软员工都熟捻于心。当这位微软亚洲研究院的研究员结束了他十天的医院之旅,走出医院时,一个利用已有的人工智能技术帮助医院医生提高生产力的计划在他的脑海里也逐渐萌芽。


知识挖掘与人工智能


闫峻是微软亚洲研究院数据挖掘与企业智能化组的负责人,今年是他在研究院工作的第10个年头。早在2003年,闫峻在北大读博士的第二年开始就以实习生的身份加入了微软亚洲研究院,彼时亚洲研究院刚成立五年,国内互联网和计算机技术发展迅猛。闫峻在博士期间的研究方向是模式识别,其实就是现在广义的机器学习。

近几年,人工智能俨然成为了计算机领域最火热的研究方向,这背后离不开机器学习、大数据和云计算等的共同作用。社会上关于人工智能的讨论始终不绝于耳,人工智能威胁论、人工智能奇点论等等。但无论媒体如何鼓吹,人工智能领域的研究专家基本上都会给你同样的答案:真正的人工智能离我们还很遥远。

目前,人工智能已经能够在一些如图像识别、语音识别、实时翻译等特定的任务上表现优异,但在更深层次的思考、总结、联想、创造等等方面的进展十分有限。此前计算机战胜人类顶级围棋棋手加强了研究者们用机器学习构建计算机智能的信心,诚然,机器学习目前也被视为是通往人工智能一条近路之一。

事实上,知识的挖掘和知识的表述是人工智能里最基础的问题。我们怎么衡量一个人是“智能”的?一方面,我们会说这个人的脑子很灵活,反应很快。另一方面我们会说这个人有很多经验,懂很多知识。对应到人工智能的研究上来,也就是我们需要人工智能本身拥有很多的背景知识,也需要他有很强的推理能力、理解能力和判断能力。目前,闫峻所在的数据挖掘与企业智能化组主要的研究方向便主要聚焦于知识的挖掘,表示与计算,具体来说就是研究如何从不同的数据来源里挖掘出知识,帮助人工智能的其他算法在具体的场景中完成一些特定的任务。

这一次,闫峻想借用自己的研究成果,为医生培养他们自己的人工智能助手,辅助医生完成一些他们无暇顾及的任务,并为患者提供更多的人文关怀。最终的目的是希望这个人工智能医生助手兼学徒有一天能够顺利出师,能像一个真正的医生一样耐心细致的回答病人的疑惑,协助病人的康复,缓解目前的医疗资源紧缺的局面。




培养一个人类医生至少需要八年,那么人工智能呢?


闫峻在病假后的第一次午饭时,就和研究院的同事们聊起了这次住院经历。让他意外的是,几乎每一个同事——甚至比他年纪小很多的90后年轻研究员都表达了强烈的同感,他们的父母或者亲人都或多或少的经历过同样的事情。在那天的午饭上,数据挖掘与企业智能化组的研究员们提出了一个创造性的想法:为医生构建一个人工智能医生助手!

对于人工智能医生助手而言,技术上最关键的一环就是让计算机学会一些必要的医学知识。这恰恰是闫峻博士所在的数据挖掘与企业智能化组所专攻的。闫峻习惯将机器学习知识的过程与人类学习知识的方式相类比,将这个过程分为四个阶段。“就像指导你的孩子一样学知识。” 闫峻形容道。

第一个阶段是人类婴儿出生到上学之前的这个阶段。这个阶段孩子还没有很强的读写和分析问题的能力,更多地是从他的父母或者身边的环境中学习一般性的知识(common sense knowledge),例如糖是甜的,天是蓝的。这种让计算机学会一般性的知识是较为基础的研究工作,机器会从不同的数据源里面学到一些基本的事实和一些基本的关系。与之对应的,不久前数据挖掘与企业智能化组还发布的 Microsoft Concept Graph和Microsoft Concept Tagging 模型就试图让计算机掌握部分常识。

第二个阶段则是小孩进入学校开始读书直至大学毕业的阶段。这个过程其实人们主要的学习方式是读书,学习书本上的知识。人们在读书的过程中会不断地分析、总结、归纳,将一些知识进行整合和关联,形成系统性的知识体系,我们称之为知识图谱(knowledge graph)。因此在这个阶段,让机器拥有阅读能力是一个非常重要的课题。研究员们让计算机阅读了大量医学学生的必学书目,让计算机从这些文本中获取作为医生助手最基础的医学知识作为储备,并为下一步进医院“实习”做好准备。

第三阶段则是研究生阶段,你会有一个导师,而你学习的方式已经不再是被动的接受书本知识,而是主动地从他人——你的导师那里学习知识了。这种学习方式中师生间有很多互动,学生会主动询问老师解决办法,从机器学习的角度来理解就是“主动学习”。到了这个阶段,研究员们就将这位人工智能助手送到医院的具体某个科室,选择一位医生作为它的“师傅”。进行简单的“拜师仪式”之后,机器人将成为某位医生的学徒。对于机器学徒不懂得问题,会在聚类总结后向导师主动询问来获取知识。

除了主动提问,跟人类的拜师学艺没有什么区别,计算机向师傅学习的最便捷的方式,就是从医生的匿名诊疗记录入手。这里暗藏着医生的经验知识,在医疗信息化的今天,每一位医生看过的病人信息都会以电子化的形式记录下来,包括病人的症状,各项检查结果以及医生的治疗方案。通过对病例的通读与学习之后,这位虚拟学徒便会对这个科室有一个大体的认识,包括常见症状以及诊疗方案等。但这并不意味着这位人工智能助手可以成功出师了,它还需要最后一个阶段的学习。

最后一个阶段人们通常称之为“增强学习”。很显然,知识的更迭日新月异,人们在走出象牙塔之后发现还需要不断地学习此时的学习更多地会依赖于自己经验的积累以及不断的试错。此前AlphaGo所采用的增强学习就是源自这类思想,它会不断尝试各种下法,观察不同的决策带来的可能性,并以此进行经验总结,从而指导他与真人下棋时的决策。在这个阶段,研究员们才让这位“助手”在监督无风险情况下有选择地与患者进行接触。搜集反馈,提升自己的经验和能力。所有的知识学习阶段都是在“终身学习“ 的框架下不断迭代的进行。

“培养一个医生至少需要八年,但是计算机几乎不眠不休、不吃不喝,并且过目不忘,所以这个学习过程毫无疑问可以大大缩短。”







请到「今天看啥」查看全文