专栏名称: AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
目录
相关文章推荐
哲学王  ·  荣格:15个顶级灵性智慧,连接高维能量 ·  15 小时前  
哲学王  ·  如果发生经济大萧条,普通人该怎么办? ·  2 天前  
哲学王  ·  胡耀邦做的这件事,不亚于林肯解放黑奴 ·  3 天前  
51好读  ›  专栏  ›  AEii国际应用能源

【Applied Energy最新原创论文】多能源系统经济环境优化设计

AEii国际应用能源  · 公众号  ·  · 2023-08-24 18:30

正文

原文信息

Optimal economic and environmental design of multi-energy systems

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261923007389

Highlights

•Novel optimization framework for designing multi-energy systems.

•Life cycle environmental burdens and a wide portfolio of technologies considered.

•Strong GHG reductions can be achieved (73%) with a marginal cost increase (18%).

•Multi-energy systems analyses require analyzing non-climate change-related impacts.

•Technology construction phase contributes up to 80% of environmental impacts.

摘要

分布式能源系统的优化设计可以显著降低成本和环境负担。然而,大多数多能源系统的优化设计模型未考虑全面的环境评估,而且相关的能源密集型行业(如工业和交通部门)的技术组合选择有限。作者提出了一种多能源系统设计的多目标优化框架,其中包括全生命周期环境性能评估,并全面考虑了住宅、交通和工业部门的技术组合。作者在满足终端用户的能源需求的前提下以最小化成本和温室气体排放为优化目标,并基于混合整数线性规划构建优化问题,而且该优化框架可适用于各种边界条件。基于包含多种工业活动的挪威某岛屿的案例分析结果表明,优化设计后的多能源系统与现有能源系统在成本上已经具备竞争力,并且可以通过增加18%的边际成本显著减少92%的天然气消耗以及73%的温室气体排放。然而,更严格的脱碳目标会导致更高的成本。当考虑工业部门耦合并以最小化温室气体排放为优化目标时,多能源系统将部署多样化的技术组合。此外,在考虑能源技术的建设阶段时会发现环境性能的权衡。因此,我们认为(i)多能源系统的设计和评估需考虑全生命周期的综合评估,且不限于温室气体排放指标;(ii)设计多能互补系统时应考虑整个生命周期,其中建设阶段对特定环境类别的影响占比高达80%。

更多关于“multi-energy systems”的文章请见:

https://www.sciencedirect.com/search?qs=multi-energy%20systems&pub=Applied%20Energy&cid=271429

Abstr act

Designing decentralized energy systems in an optimal way can substantially reduce costs and environmental burdens. However, most models for the optimal design of multi-energy systems (MESs) exclude a comprehensive environmental assessment and consider limited technology options for relevant energy-intensive sectors, such as the industrial and mobility sectors. This paper presents a multi-objective optimization framework for designing MESs, which includes life cycle environmental burdens and considers a wide portfolio of technology options for residential, mobility, and industrial sectors. The optimization problem is formulated as a mixed integer linear program that minimizes costs and greenhouse gas (GHG) emissions while meeting the energy demands of given end-users. Whereas our MESs optimization framework can be applied for a large range of boundary conditions, the geographical island Eigerøy (Norway) is used as a showcase as it includes substantial industrial activities. Results demonstrate that, when properly designed, MESs are already cost-competitive with incumbent energy systems, and significant reductions in the amount of natural gas (92%) and GHG emissions (73%) can be obtained with a marginal cost increase (18%). Stricter decarbonization targets incur larger costs. A broad portfolio of technologies is deployed when minimizing GHG emissions and integrating the industrial sector. Environmental trade-offs are identified when considering the construction phase of energy technologies. Therefore, we argue that (i) MES designs and assessments require a thorough life cycle assessment beyond GHG emissions, and (ii) the entire life cycle should be considered when designing MESs, with the construction phase contributing up to 80% of specific environmental impact categories.

Keywords

Multi-energy systems

Life cycle assessment

Techno-economic assessment

Mixed integer linear program

Decarbonization

Graphics

Fig. 1. Technologies considered in the MES on geographical islands. Electricity and heat consumption are both included as well as different storage technologies. In our model, a distinction is made between low- and high-temperature heat, although this is not illustrated in this figure to reduce complexity.







请到「今天看啥」查看全文