专栏名称: AI数据派
THU数据派"基于清华,放眼世界",以扎实的理工功底闯荡“数据江湖”。发布全球大数据资讯,定期组织线下活动,分享前沿产业动态。了解清华大数据,敬请关注姐妹号“数据派THU”。
目录
相关文章推荐
Linux就该这么学  ·  不止是操作系统!Linux ... ·  昨天  
Linux就该这么学  ·  微信新功能升级:可一次性删除所有“单向好友” ·  3 天前  
Linux爱好者  ·  AI 正在培养一代 “文盲程序员” ·  6 天前  
Linux爱好者  ·  126K + 30K ... ·  6 天前  
Linux爱好者  ·  嵌入式开发实战:国产8nm AIoT全流程 ·  4 天前  
51好读  ›  专栏  ›  AI数据派

独家 | 如何逃出“AI楚门的世界”(附资源)

AI数据派  · 公众号  ·  · 2019-04-01 07:30

正文


曾几何时,你是否会对这个世界产生怀疑:我到底生活在一个怎样的世界?它到底是真实的,还是一个受人控制虚假的世界?有人可能会奇怪,为什么会有这种想法,但是如果你看过《楚门的世界》,你大概就会理解了。


《楚门的世界》是派拉蒙影业公司于1998年出品的一部电影,讲述了一档热门连续剧主人公楚门的故事。他从一出生就被直播,安排生活在一个巨大的摄影棚小岛上。他身边的所有事情都是虚假的,他的亲人和朋友全都是演员,但他本人对此一无所知。但最终楚门从蛛丝马迹中觉察到了这一切,不惜一切代价走出了这个虚拟的世界。有人说,这只是电影,但是很多人不知道的是,《楚门的世界》里面的某些情节正逐渐发生在我们身边,而这一切的主导,就是日渐流行的人工智能AI……

你看到的视频不是真视频


不久前,B站UP主“换脸哥”用AI技术将杨幂的脸“贴”在了朱茵饰演的黄蓉脸上,登上了微博话题榜。这个事件还没有过去多久,又有一个UP主将知名演员徐锦江老师的脸换成“海王”再度引发全面讨论,甚至徐锦江老师本人也转发视频作出了回应:“我的脸?!”现在,B站上UP主上传关于AI换脸视频俨然成为了一种风潮,大有愈加泛滥之势。


AI换脸技术在国外名为Deepfakes,其实是一种逼真交换面孔的新视频技术。通过电脑程序找到两个面部之间的共同点,搭建神经网络来学习人脸,可以使替换后的脸生动模仿原来的表情,达到以假乱真的效果。早在2017年底,一位ID为Deepfakes的用户将《神奇女侠》主演盖尔·加朵的脸“贴”在色情片主演脸上,上传到网络,引发热议。


Deepfakes的技术原理其实并不难,需要掌握以下几步:


  1. 获取deepfakes工具包git clone

    https://github.com/deepfakes/faceswap.git

  2. 补齐依赖包:pip install tqdmpip install cv2等

  3. 收集照片样本以及面部抓取

  4. 运用脸部特征提取算法HOG(Histogram of Oriented Gradient)提取面部特征,开始进行训练

  5. 转换人脸。通常运用到AutoEncoder(一种卷积神经网络),它会根据输入图片,重构这个图片(也就是根据这个图片再生成这个图片)


只需要熟练的掌握了这几步,理论上通过AI你就可以制造出任何你想看到的人物主演的电影,包括你的邻居和你的同学。虽然某些组织已经对该技术发出了警告和并作出了限制,但是“换脸术”显然会继续存在,而且只会越来越精湛。

你看到的照片不是真照片


今年二月份,一个名为“此人不存在”(ThisPersonDoesNotExist.com)的网站被国内媒体集中报道。过去网络上流行一句话,叫“无图无真相”,但这个网站的出现让“有图有真相”也变成了过去式。这个网站的开发者Philip Wang利用AI算法,通过采用真人照片来训练,生成人工合成的类似照片,生成的全新照片足以达到以假乱真的水准。

这些人现实都不存在,全部生成自 ThisPersonDoesNotExist.com 网站


支持该网站的基本AI框架是著名的生成对抗网络GAN,最初由谷歌大脑科学家Ian Goodfellow等人在 2014 年发明。英伟达据此在2018发布了StyleGAN 开源算法,该算法采用生成对抗网络(GAN)方法,利用两个神经网络互相训练,一个试图生成与真实照片无法区分的合成图像,另一个试图分辨出差异,这样训练几个星期后,图像创建网络可以生成从来不曾在世界上出现过但却无比真实的人脸。


StyleGAN官方开源地址:

https://github.com/NVlabs/stylegan

通过下载一个包含Github库基础的预训练StyleGAN生成器 pretrained_example.py,甚至普通人都可以使用相关Python代码直接用来生成图像。



生成1024*1024分辨率的图像,如果使用英伟达Tesla V100 GPU做训练,硬件配置和训练时间如下:


虽然这个生成器由AI生成的照片目前有一些还不太完美,但是另外一些被生成出来的细节丰富、表情逼真的人脸,已经足够骗过大多数人的眼睛,这不由地让人产生后怕的感觉——你以为足够真实的照片,它却是AI创造的。

你看到的新闻不是真新闻


虽然假新闻大家已经见怪不怪了,但是很多假新闻是出于各种利益和选择,人为制造的,然而AI制造的假新闻你看过吗?据彭博社报道,埃隆·马斯克创办的OpenAI近期发布了自然语言处理(NLP)模型——GPT-2,仅需寥寥数个单词,算法就能据此生成出一条几乎可以以假乱真的新闻来。

报道称,最初算法设计仅是作为一种通用语言的人工智能程序,可以回答问题,概括故事梗概翻译文本等,但是研究人员很快意识到它的能力能够输出虚假信息。目前,OpenAI并没有公布GPT-2模型及代码,只是象征性的公布了一个仅含117M参数的样本模型及代码,相当于他们宣称使用的数据量的0.29%。


样本模型及代码查看:

https://github.com/openai/gpt-2



软件编写新闻的过程很简单,研究人员只需给软件提供一些简单的初始信息,例如:“一节装载受控核材料的火车车厢今天在Cincinnati被盗,下落不明。”以此作为基础,软件可以编写出由7个段落组成的新闻,软件还会模仿正式新闻那样引述政府官员的话语,只是这些信息全是假的。

实际到目前,人工生成虚假新闻对人们的日常生活的影响已经足够严重,而如果此类内容能被AI自动生成,那么结果将更加无法想象。另外需要强调的是,这种算法还能够针对特定人群的统计特征甚至个人偏好进行具体优化。OpenAI政策主管Jack Clark表示,“在不久的将来,人工智能也许会以可靠的方式及效率大规模发布虚假故事、伪造推文或者其它极具说服力的误导性评论。”

看完这些,你有没有一种熟悉的感觉?是的,正如《楚门的世界》剧情那样,我们正在被AI技术逐渐包裹在一个虚假的世界里,加上如今日渐成熟的AI推荐算法,未来人工智能甚至可以针对每一个人的喜好,制作出以假乱真的资讯:在一起突发新闻的直播里,你看到的视频、人物图片以及文字很有可能都是假的。那我们有没有办法逃出“AI楚门的世界”呢?答案是肯定的,那就是 利用AI对抗AI

利用CNN网络作为分类器监测视频真假


我们怎么样监测视频是否由AI生成的呢?博士生李跃尊(音译)和纽约州立大学奥尔巴尼分校的助理教授刘思伟(音译)提出了一种新技术方法,可以识别深度学习算法生成的假视频。李和刘在之前发表的一篇论文 (链接:https://arxiv.org/abs/1811.00656) 中提到道:“我们观察到,现有的DeepFake算法只能生成出分辨率有限的图像,这些低分辨率图像要经过扭曲才能扩展到和来源视频一样的分辨率。我们的方法就是基于这个观察。”

具体做法上,最开始他们使用传统视觉算法来检测 24,442 张训练图像,提取其脸部关键点。然后,他们通过弯折或扭曲图像中的人脸特征,来模拟 DeepFake 生成的假图片、视频中可能会出现的怪异效果。最后,他们用真实的和扭曲的图像训练了一些卷积神经网络(CNN)作为分类器,该分类器可以给出一个视频为真还是为假的概率。训练完成后,他们向这些卷积神经网络中输入视频的截图,就可以检测这些截图中的人脸到底是真的还是伪造的。

当然也有一些其它的学者贡献了他们方法,包括英国的牛津大学的研究者开发的老牌卷积神经网络VGG16,在假视频识别任务中精度为83.3%,微软的研究者们开发的卷积神经网络ResNet50识别精度则高达97.4%。

AI刑侦检测工具识别假图片


在识别假图片上,美国国防部研究机构DAPRA研发出了首款“反变脸”的AI刑侦检测工具,其原理就是以AI攻AI。这款AI反变脸刑侦工具是DARPA Media Forensics计划的一部分。DARPA资助的Media Forensics计划,旨在成功辨别由机器学习算法生成的虚假图片和视频。该计划研究人员正在尝试开发出一种可扩展的平台化工具,对尤其是基于GAN模型的“Deepfake”生成的假视频和图像进行识别。

纽约州立大学奥尔巴尼分校教授Siwei Lyu和他的学生 Yuezun Li 与 Ming-Ching Chang共同发现,使用AI技术生成的假脸,极少甚至不会眨眼,因为它们都是使用睁眼的照片进行训练的,于是DARPA 基于此开发出了一款工具。他们在论文详细介绍了如何组合两个神经网络,从而更有效地揭露哪些照片是AI合成的,“这些视频往往忽略了自发的、无意识的生理活动,例如呼吸、脉搏和眼球运动”。







请到「今天看啥」查看全文