专栏名称: 学姐带你玩AI
这里有人工智能前沿信息、算法技术交流、机器学习/深度学习经验分享、AI大赛解析、大厂大咖算法面试分享、人工智能论文技巧、AI环境工具库教程等……学姐带你玩转AI!
目录
相关文章推荐
中国食品药品监管杂志  ·  悦读 | 胜人者力,自胜者强 ·  昨天  
食安安徽  ·  滁州市召开食品召回工作交流座谈会 ·  2 天前  
中国食品药品监管杂志  ·  合理用药 | 缺铁性贫血口服补铁剂的注意事项 ·  3 天前  
中国药闻  ·  更大力度!中国稳外资20条发布 ·  3 天前  
51好读  ›  专栏  ›  学姐带你玩AI

时序预测基础模型又中顶会!真心建议各位往这个方向发论文

学姐带你玩AI  · 公众号  ·  · 2024-09-15 18:15

正文

时序领域又有新突破啦!谷歌最新提出TimesFM,仅需200M参数,零样本预测性能超越有监督!成功入选ICML 2024!

TimesFM是一种全新的 时间序列通用基础模型 ,这类模型相比传统时序模型,拥有整合和利用广泛知识库的能力,在处理复杂、非线性、非平稳的时序数据时性能更高,能给我们提供更高精度的预测结果。

因此在时序领域,关于通用基础模型的研究非常火热,不仅是TimesFM,还有很多效果很赞的研究被顶会收录,实力证明这 是个发论文的好方向。

目前这个方向主流的研究路线是从头开始预训练时序基础模型,建议想发论文的同学从这个角度入手,如果感觉没思路,可以看我整理好的 8篇 时间序列通用基础模型论文 作参考,都是最新且高质量,代码基本都有。

扫码添加小享, 回复“ 时序基础

免费获取 全部论文+开源代码

A decoder-only foundation model for time-series forecasting

方法: 论文介绍了TimesFM,一个用于时间序列预测的实用基础模型,其零-shot表现接近于完全监督的预测模型的准确性,并在各种时间序列数据上进行了预训练。该模型的预训练数据集包括1000亿个时间点的真实世界和合成数据集。

创新点:

  • TimesFM是一种基于预训练的时间序列基础模型,具有接近最先进的有监督预测模型的零-shot性能。
  • TimesFM的模型架构是基于解码器-只有模型,采用了输入分块和较长的输出分块的设计。
  • TimesFM在多个公开数据集上进行了零-shot评估,并且在准确度上超过了其他基线模型。

Unified Training of Universal Time Series Forecasting Transformers

方法: 本文介绍了一个名为MOIRAI的基于掩码编码器的通用时间序列预测Transformer,旨在解决通用预测范式中遇到的问题。研究者引入了LOTSA,这是一个用于预训练时间序列预测模型的最大开放数据集合。MOIRAI在分布内和分布外的设置下进行评估,并能够进行概率和长序列预测。

创新点:

  • 提出了在预训练的基础上进行微调的方法,以提高时间序列预测的性能和数据效率。此方法能够在不同数据集和任务上进行泛化和适应,从而实现更广泛的应用。
  • 提出了一个新的大规模时间序列数据集,其中包含来自九个领域的超过270亿个观测数据。通过使用这个数据集对模型进行训练,作者的模型在零样本预测任务上取得了竞争性或优越的性能。

扫码添加小享, 回复“ 时序基础

免费获取 全部论文+开源代码

DAM: Towards A Foundation Model for Time Series Forecasting

方法: 论文介绍了一种称为DAM的深度数据依赖近似分析模型,它是一种通用的时间序列预测基础模型,可以同时适用于多个不同的数据集和领域,并能够根据不同的预测需求进行灵活调整。

创新点:

  • DAM是第一个可在各种不同的领域和数据集上进行准确预测的通用时间序列预测模型,可以在训练集内外都有良好的泛化能力。
  • DAM使用了灵活的历史采样策略,可以高效地获取过去的全局信息,并保持对最近历史的关注。这种采样策略使得DAM能够在不同的数据集上进行预测,而不受固定长度和定期采样的限制。







请到「今天看啥」查看全文