近期收到读者朋友的咨询,他们在建立开发部数据团队的过程中遇到困惑:在大老板的支持下,部门破天荒获得了组建专职数据团队支持开发部,然而新部门几乎没有工作成果,薪酬又高的吓人,几乎面临解散。
我认为如果没有正确的认知,这应该是未来主流的问题,这些传统行业赚的是辛苦钱,大老板能给钱给支持就要用好,本篇分享一些建议:
建立数据团队的目的是要解决问题,这是最终目的,在解决业务问题的过程中朋友们遇到最多的问题可能是IT类的问题,于是不论大公司还是小公司,首先在此方面投入大量资金,但随后而来就会发现这些技术人员无法管理,没有工作成果,除了争吵什么问题也没解决。
出现上述问题的最主要原因就是业务部门不能清晰的把需求传递给IT技术人员:业务的数据化无法完成,那再牛的IT也是巧妇难为无米之炊,这就像在实体商业领域,我们有了一处位置不错的商铺,找人过来装修,但没有设计图纸,装修工人在好也不知道活该怎么干。
因此需要一个类似产品经理的智能,这个职能的角色就是商业装修的设计师一样。
这就好像工程部门是公司开店的重要组成一样,店装修不出来一切都是零,没有IT 技术也一切无从谈起。IT 技术岗至少需要下面几个职能:
上面都是最基础的岗位,如果公司有其他需求还要配人,比如有gis需求就要另外配人,有移动端需求还要招募ios和android开发工程师。
把上面这些配齐了还不够,还需要为这个部门配置至少一个领导。至此,部门貌似配置完毕了,但上面的配置基本上只是一个幻想,因为目前IT人员的薪资远比传统行业高,一个团队基本月薪在10万以上,一年至少150万的投资,200万也是正常的。
这种投资对于大公司来说没问题,对于中小品牌来说完全是无法负担的,同时对于IT人员来说,他们在传统行业也学习不到什么技能,而且传统公司也不会给超过行业平均水平的薪酬,也留不住有水平有情怀的技术,加上产品、业务与技术之前沟通一定需要协调,最终效果肯定不佳。
从上面的分析内容来看,完全自建团队基本上只适合大公司,但中型公司和小型公司也需要相关但产品该怎么办?
对于中小公司来说,完全没有那么大的数据量,稍微大一些的数量也产生在交易系统,开发工作只要每家门店的月度最多是每天的销售,一张excel表格完全可以搞定。
整体来说,技术虽然非常重要,但公司毕竟是需要业务落地的,自建技术团队成本高管理难,把有限的预算花在刀刃上,复杂的技术轻量化。业务数据化这块是必不可少的,巨像生产物料一样,总要有人把控。数据平台的后台和前端,至少需要一个数据库和数据仓库,因为还要考虑到后续发展壮大之后,数据量变多便复杂的性能,后台和前端可以用finereport报表类很好的解决,后期的报表开发和维护可以交给一个人去解决。评定这块技术工作之后,关注业务是最好的选择。
下面是总结的三张图片,希望能够解决类似的问题:
End
为了让大家能有更多的好文章可以阅读,36大数据联合华章图书共同推出「祈文奖励计划」,该计划将奖励每个月对大数据行业贡献(翻译or投稿)最多的用户中选出最前面的10名小伙伴,统一送出华章图书邮递最新计算机图书一本。投稿邮箱:[email protected]
点击查看:你投稿,我送书,「祈文奖励计划」活动详情>>>
如果有人质疑大数据?不妨把这两个视频转给他
视频:大数据到底是什么 都说干大数据挣钱 1分钟告诉你都在干什么
人人都需要知道 关于大数据最常见的10个问题
从底层到应用,那些数据人的必备技能
如何高效地学好 R?
一个程序员怎样才算精通Python?
排名前50的开源Web爬虫用于数据挖掘
33款可用来抓数据的开源爬虫软件工具
在中国我们如何收集数据?全球数据收集大教程
PPT:数据可视化,到底该用什么软件来展示数据?
干货|电信运营商数据价值跨行业运营的现状与思考
大数据分析的集中化之路 建设银行大数据应用实践PPT
【实战PPT】看工商银行如何利用大数据洞察客户心声?
六步,让你用Excel做出强大漂亮的数据地图
数据商业的崛起 解密中国大数据第一股——国双
双11剁手幕后的阿里“黑科技” OceanBase/金融云架构/ODPS/dataV
金融行业大数据用户画像实践
“讲述大数据在金融、电信、工业、商业、电子商务、网络游戏、移动互联网等多个领域的应用,以中立、客观、专业、可信赖的态度,多层次、多维度地影响着最广泛的大数据人群
搜索「36大数据」或输入36dsj.com查看更多内容。
投稿/商务/合作:[email protected]