专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  【[40星]CORAL:一个大规模的对话式检 ... ·  21 小时前  
爱可可-爱生活  ·  《爱可可微博热门分享(2.5)》 ... ·  20 小时前  
爱可可-爱生活  ·  【The End of Search, ... ·  昨天  
宝玉xp  ·  OpenAI 今天下午在 Reddit ... ·  5 天前  
51好读  ›  专栏  ›  机器学习研究会

【推荐】NiftyNet:面向医学图像分析和图像引导治疗的开源CNN平台(附代码)

机器学习研究会  · 公众号  · AI  · 2018-01-27 23:31

正文

                                                                                                                                                                                      
点击上方“机器学习研究会”可以订阅
摘要
 

转自:爱可可-爱生活

What is NiftyNet?

NiftyNet is a TensorFlow-based open-source convolutional neural networks (CNNs) platform for research in medical image analysis and image-guided therapy. NiftyNet’s modular structure is designed for sharing networks and pre-trained models. Using this modular structure you can:

  • Get started with established pre-trained networks using built-in tools;

  • Adapt existing networks to your imaging data;

  • Quickly build new solutions to your own image analysis problems.

The code is available via GitLab, or you can quickly get started with the PyPI module available here.

Features

NiftyNet currently supports medical image segmentation and generative adversarial networks. NiftyNet is not intended for clinical use. Other features of NiftyNet include:

  • Easy-to-customise interfaces of network components

  • Sharing networks and pretrained models

  • Support for 2-D, 2.5-D, 3-D, 4-D inputs*

  • Efficient discriminative training with multiple-GPU support

  • Implementation of recent networks (HighRes3DNet, 3D U-net, V-net, DeepMedic)

  • Comprehensive evaluation metrics for medical image segmentation

*2.5-D: volumetric images processed as a stack of 2D slices; 4-D: co-registered multi-modal 3D volumes

Networks

A number of models from the literature have been (re)implemented in the NiftyNet framework. These are listed below. All networks can be applied in 2D, 2.5D and 3D configurations and are reimplemented from their original presentation with their default parameters.

  • DeepMedic (Kamnitsas et. al. 2017)

  • HighRes3dNet (Li et. al. 2017)

  • ScaleNet (Fidon et. al. 2017)

  • UNet (Çiçek et. al. 2016)

  • VNet (Milletari et. al. 2016)

Further details can be found in the GitLab networks section here.





请到「今天看啥」查看全文