专栏名称: 材料科学与工程
材料类综合、全面、专业的平台。主要发布与材料相关的知识信息。包括前沿资讯,基础知识,科研产业,考研求职等。材料科学网:www.cailiaokexue.com。
目录
相关文章推荐
新闻广角  ·  去年全国结婚登记610.6万对 下降约20.5% ·  23 小时前  
园长说广州楼市  ·  过年去巴厘岛一趟,踩了一堆坑… ·  4 天前  
51好读  ›  专栏  ›  材料科学与工程

《自然•通讯》位错可有效调控材料物理特性,改变传统认识!

材料科学与工程  · 公众号  ·  · 2017-07-06 13:55

正文

点击上方「 材料科学与工程 」快速关注

材料类综合、全面、专业的微信平台


中国科学院金属研究所沈阳材料科学国家(联合)实验室马秀良研究员、朱银莲研究员、唐云龙博士、刘颖博士和王宇佳博士等人组成的材料界面电子显微学研究团队,利用高通量脉冲激光沉积技术,通过调控异质界面位错的柏氏矢量,成功构筑出具有巨大线性应变梯度、超低弹性能以及特殊物理特性的功能氧化物纳米结构。2017年6月30日,英国《自然·通讯》(NatureCommunications)期刊在线发表了该项研究成果。

论文链接:

http://www.syb.cas.cn/ydhz/kjdt/201707/W020170703395616049874.pdf


应变(尤其是非均匀应变)能够对特定材料结构实施梯度化调节,从而调控甚至诱导产生母体材料所不具备的全新物理特性。 但是,非均匀弹性应变通常很难集成在特定器件上,其主要困难在于由非均匀弹性应变产生的“向错”具有非常高的应变能,难以稳定存在。如何突破“向错”应变的能量壁垒,实现对非均匀弹性应变在材料元器件中的有效调控,进而制备具有大范围响应特性的梯度功能材料,是当今先进功能材料领域面临的一个重大基础性科学难题。

金属所沈阳材料科学国家(联合)实验室的固体原子像界面结构研究团队长期致力于材料基础科学问题的电子显微学研究,经过多年的学术积累,在解决上述基础科学难题方面近来取得突破。 他们在利用脉冲激光沉积技术生长氧化物异质界面过程中,采用高通量模式,使BiFeO3/LaAlO3(001)界面产生新奇的、具有面外分量的a[011]刃型位错阵列。 像差校正电子显微分析表明,这种新型位错阵列具有晶格旋转效应(类似弹性弯曲变形),使BiFeO3纳米结构中产生高达106/m的线性应变梯度。这种巨大的线性应变梯度通过弯电效应产生了数兆伏/m的内建电场(与传统半导体p-n结或肖特基结的内电场相当),同时也大幅度拓宽了BiFeO3纳米结构的可见光吸收范围。这表明巨大的线性应变梯度可实现对带隙的连续调控,进而影响光电响应特性,增强其光催化特性等。

该项研究结果显示,“向错”的弹性能随尺度的变化具有很强的非线性特征,体现出巨大的尺寸效应。理论计算表明在纳米尺度的BiFeO3/LaAlO3体系中,即便其弹性应变梯度超过106/m,该体系的弹性能低至不及均匀应变下弹性能的十分之一,甚至低于界面失配位错阵列本身的能量。

位错是材料科学中的核心概念之一。该项工作改变了人们对功能材料中有关位错作用的传统认识:位错未必是一定导致某些物理特性降低的结构缺陷,而是能被用来有效调控甚至产生优异物理特性的新组元。 该项研究提供了如何利用位错的特性构筑具有连续带隙变化的梯度功能材料的概念、原理及方法。

该项研究得到了国家自然科学基金、中国科学院前沿科学重点研究项目、科技部973计划以及金属所葛庭燧奖研金等项目资助。


图1:LaAlO3/BiFeO3/LaAlO3(001)纳米结构沿[100]的HAADF-STEM成像。


图2:(a)LaAlO3/BiFeO3/LaAlO3(001)纳米结构中晶格旋转(ω)和(b)面内应变(εxx)的二维分布。(c)对应(a)中的三处白色矩形区域沿面内方向晶格旋转线分布。(d)对应(b)中的白色矩形沿面外方向应变线分布。


图3:(a)BiFeO3/LaAlO3/BiFeO3/LaAlO3(001)纳米结构中晶格旋转(ω)和(b)面内应变(εxx)的二维分布。(c)对应(b)中的白色矩形沿面外方向应变线分布。(d)为在循环BiFeO3/LaAlO3纳米结构中保持这种线性应变梯度的原理示意图。


图4:BiFeO3纳米“向错”弹性能计算及其与均匀应变状态下的比较。


— END —


相关阅读:

《自然-材料》卢柯&李秀艳:playing with defects in metals

《Science》卢柯发现晶界稳定性可调控纳米金属性能,澄清三十多年争论!


来源:金属研究所。编辑:明轩

*本文系转载,如有问题请联系我们以便处理







请到「今天看啥」查看全文