专栏名称: 算法与数学之美
从生活中挖掘数学之美,在实践中体验算法之奇,魅力旅程,从此开始!
目录
相关文章推荐
九章算法  ·  很遗憾!刷题拿大包,已经是过去的事了… ·  3 天前  
九章算法  ·  今日开播!FAANG工程师给北美码农划202 ... ·  2 天前  
九章算法  ·  一招通关Meta面试!system ... ·  4 天前  
算法与数据结构  ·  悼念!清华大学计算机教授、《数据结构》编著者 ... ·  5 天前  
51好读  ›  专栏  ›  算法与数学之美

40行代码的人脸识别实践

算法与数学之美  · 公众号  · 算法  · 2017-05-22 21:29

正文

40行代码的人脸识别实践

来源:腾讯云技术社区 刘潇龙

编辑:Gemini


前言

很多人都认为人脸识别是一项非常难以实现的工作,看到名字就害怕,然后心怀忐忑到网上一搜,看到网上N页的教程立马就放弃了。这些人里包括曾经的我自己。其实如果如果你不是非要深究其中的原理,只是要实现这一工作的话,人脸识别也没那么难。今天我们就来看看如何在40行代码以内简单地实现人脸识别。


一点区分

对于大部分人来说,区分人脸检测人脸识别完全不是问题。但是网上有很多教程有意无意地把人脸检测说成是人脸识别,误导群众,造成一些人认为二者是相同的。其实,人脸检测解决的问题是确定一张图上有木有人脸,而人脸识别解决的问题是这个脸是谁的。可以说人脸检测是是人识别的前期工作。



所用工具

  • Anaconda 2 —— Python 2

  • Dlib

  • scikit-image



Dlib

对于今天要用到的主要工具,还是有必要多说几句的。Dlib是基于现代C++的一个跨平台通用的框架,作者非常勤奋,一直在保持更新。Dlib内容涵盖机器学习、图像处理、数值算法、数据压缩等等,涉猎甚广。更重要的是,Dlib的文档非常完善,例子非常丰富。就像很多库一样,Dlib也提供了Python的接口,安装非常简单,用pip只需要一句即可:


  1. pip install dlib

上面需要用到的 scikit-image同样只是需要这么一句:

  1. pip install scikit-image

  • 注:如果用 pip install dlib 安装失败的话,那安装起来就比较麻烦了。错误提示很详细,按照错误提示一步步走就行了。


人脸识别


之所以用 Dlib 来实现人脸识别,是因为它已经替我们做好了绝大部分的工作,我们只需要去调用就行了。Dlib里面有人脸检测器,有训练好的人脸关键点检测器,也有训练好的人脸识别模型。今天我们主要目的是实现,而不是深究原理。感兴趣的同学可以到官网查看源码以及实现的参考文献。

今天的例子既然代码不超过40行,其实是没啥难度的。有难度的东西都在源码和论文里。

首先先通过文件树看一下今天需要用到的东西:

准备了六个候选人的图片放在 candidate-faces 文件夹中,然后需要识别的人脸图片 test.jpg 。我们的工作就是要检测到 test.jpg 中的人脸,然后判断她到底是候选人中的谁。

另外的 girl-face-rec.py 是我们的python脚本。 shape_predictor_68_face_landmarks.dat是已经训练好的人脸关键点检测器。 dlib_face_recognition_resnet_model_v1.dat 是训练好的ResNet人脸识别模型。ResNet是何凯明在微软的时候提出的深度残差网络,获得了 ImageNet 2015 冠军,通过让网络对残差进行学习,在深度和精度上做到了比 CNN 更加强大。


1、前期准备

shape_predictor_68_face_landmarks.dat和 dlib_face_recognition_resnet_model_v1.dat都可以在这里找到。不能点击超链接的可以直接输入以下网址:http://dlib.net/files/。

然后准备几个人的人脸图片作为候选人脸,最好是正脸。放到 candidate-faces 文件夹中。

本文这里准备的是六张图片,如下:

她们分别是

然后准备四张需要识别的人脸图像,其实一张就够了,这里只是要看看不同的情况:

可以看到前两张和候选文件中的本人看起来还是差别不小的,第三张是候选人中的原图,第四张图片微微侧脸,而且右侧有阴影。

2、识别流程

数据准备完毕,接下来就是代码了。识别的大致流程是这样的:



3、代码

代码不做过多解释,因为已经注释的非常完善了。以下是 girl-face-rec.py

  1. # -*- coding: UTF-8 -*-

  2. import sys,os,dlib,glob,numpy

  3. from skimage import io

  4. if len(sys.argv) != 5:

  5.     print "请检查参数是否正确"

  6.     exit()

  7. # 1.人脸关键点检测器

  8. predictor_path = sys.argv[1]

  9. # 2.人脸识别模型

  10. face_rec_model_path = sys.argv[2]

  11. # 3.候选人脸文件夹

  12. faces_folder_path = sys.argv[3]

  13. # 4.需识别的人脸

  14. img_path = sys.argv[4]

  15. # 1.加载正脸检测器

  16. detector = dlib.get_frontal_face_detector()

  17. # 2.加载人脸关键点检测器

  18. sp = dlib.shape_predictor(predictor_path)

  19. # 3. 加载人脸识别模型

  20. facerec = dlib.face_recognition_model_v1(face_rec_model_path)

  21. # win = dlib.image_window()

  22. # 候选人脸描述子list

  23. descriptors = []

  24. # 对文件夹下的每一个人脸进行:

  25. # 1.人脸检测

  26. # 2.关键点检测

  27. # 3.描述子提取

  28. for f in glob.glob(os.path.join(faces_folder_path, "*.jpg")):

  29.    print("Processing file: {}".format(f))

  30.    img = io.imread(f)

  31.    #win.clear_overlay()

  32.    #win.set_image(img)

  33.    # 1.人脸检测

  34.    dets = detector(img, 1)

  35.    print("Number of faces detected: {}".format(len(dets)))

  36.    for k, d in enumerate(dets):  

  37.    # 2.关键点检测

  38.    shape = sp(img, d)

  39.    # 画出人脸区域和和关键点

  40.    # win.clear_overlay()

  41.    # win.add_overlay(d)

  42.    # win.add_overlay(shape)

  43.    # 3.描述子提取,128D向量

  44.    face_descriptor = facerec.compute_face_descriptor(img, shape)

  45.    # 转换为numpy array

  46.    v = numpy.array(face_descriptor)  

  47.    descriptors.append(v)

  48. # 对需识别人脸进行同样处理

  49. # 提取描述子,不再注释

  50. img = io.imread(img_path)

  51. dets = detector(img, 1)

  52. dist = []

  53. for k, d in enumerate(dets):

  54.    shape = sp(img, d)

  55.    face_descriptor = facerec.compute_face_descriptor(img, shape)

  56.    d_test = numpy.array(face_descriptor)

  57.    # 计算欧式距离

  58.    for i in descriptors:

  59.    dist_ = numpy.linalg.norm(i-d_test)

  60.    dist.append(dist_)

  61. # 候选人名单

  62. candidate = ['Unknown1','Unknown2','Shishi','Unknown4','Bingbing','Feifei']

  63. # 候选人和距离组成一个dict

  64. c_d = dict(zip(candidate,dist))

  65. cd_sorted = sorted(c_d.iteritems(), key=lambda d:d[1])

  66. print "\n The person is: ",cd_sorted[0][0]  

  67. dlib.hit_enter_to_continue()



4、运行结果



我们在 .py所在的文件夹下打开命令行,运行如下命令

python girl-face-rec.py 1.dat 2.dat ./candidate-faecs test1.jpg

由于 shape_predictor_68_face_landmarks.dat 和 dlib_face_recognition_resnet_model_v1.dat 名字实在太长,所以我把它们重命名为 1.dat 和 2.dat 。

运行结果如下:

  1. The person is Bingbing

记忆力不好的同学可以翻上去看看 test1.jpg 是谁的图片。有兴趣的话可以把四张测试图片都运行下试试。

这里需要说明的是,前三张图输出结果都是非常理想的。但是第四张测试图片的输出结果是候选人4。对比一下两张图片可以很容易发现混淆的原因。

机器毕竟不是人,机器的智能还需要人来提升。

有兴趣的同学可以继续深入研究如何提升识别的准确率。比如每个人的候选图片用多张,然后对比和每个人距离的平均值之类的。全凭自己了。



往期经典文章回顾:

  1. 微积分的发现是人类精神的最高胜利

  2. 数学思维比数学运算更重要

  3. 经典回顾 | 十大数据挖掘领域的经典算法

  4. 瞎扯现代数学的基础

  5. 瞎扯现代数学的基础

  6. 主宰这个世界的10大算法

  7. 一盘红烧肉告诉你:本科、硕士、博士,区别在哪儿?

  8. 机器学习中距离和相似性度量方法

  9. 数学思维比数学运算更重要

  10. 瞎扯数学分析-微积分(1~4)

  11. 程序人生的四个象限和两条主线

  12. 黎曼猜想证明新进展

  13. 数学是安身立命之本

  14. 关于投资的12个数学原理

  15. 丘成桐:中国学生基础真的比欧美学生好吗?

征稿启事

算法与数学之美科普平台欢迎来稿!

稿件内容涉及数学、物理、算法、计算机、编程等相关领域。稿件一经采用。我们将奉上稿酬。

投稿邮箱:[email protected]