细胞数量变化的群体动力学模型可以描述癌症演变的总体趋势,却无法洞悉微观分子机制对癌变的影响。当前,癌症基因组和细胞内调控信号网络研究的快速发展已经使人们可以很精细的了解细胞内部分子调控机制的细节。这种情况下,需要新的数学模型以帮助生物学家理解这些微观分子机制如何影响宏观细胞群体动力学的变化。罗伯特.温伯格早在上世纪末出版的一本书中就对此作出了准确的预言。他说 “到下一个世纪的第二个10年结束时,细胞信号系统的细枝末节都将会大白于天下。……到那时,数学家将向生物学家解释细胞内部的微型电脑的实际运作情况,他们将告诉我们细胞的工作思路以及它在肿瘤演进途中叛变的过程”。
近二十多年来,对生物系统内调控关系建立数学模型探讨不同组成部分间的相互关系与动态过程的研究飞速发展,形成一门新兴综合学科—计算系统生物学(Computational Systems Biology)。计算系统生物学是融合了生物、数学、物理、信息等的交叉学科,主要通过建立可计算模型对生物中的动态过程和刺激响应机制进行研究,例如通过对调控细胞凋亡的调控通路研究不同刺激信号下细胞是否起始凋亡响应、细胞周期的动力学、节律变化的调控机理等。在这些研究中,通常需要采用随机动力学、微分方程模型等数学工具对复杂的非线性系统进行描述。计算系统生物学不同于以研究生物数据为主要内容的生物统计学或者生物信息学,更关注时序数据之间的关联和动态变化机制。
目前,建立计算模型研究从分子层次变化到肿瘤生长的癌变过程的研究还方兴未艾,面临许多挑战性问题。生命系统的变化是一个时间、空间的多尺度调控过程。细胞内各种响应机制通过复杂的信号通路进行精细调控,而且不同的通路之间相互交织,盘根错节。这些通路中的任何一个基因的突变都有可能引起细胞行为的变化并且最终导致细胞群体的异常行为。此外,难以捉摸的表观遗传变化增加通过模型预测基因表达和细胞行为的难度。针对这些复杂性,在数学建模中不可能以单一的模型统一描述所有这些过程,而是针对不同的尺度选择合适的数学工具进行描述,并通过不同尺度模型的耦合研究其相互响应。