其中Wij 为 i 像素对 j字符的权重,bi 为数字类 i 的偏置量,j 代表给定图片 x 的像素索引用于像素求和。然后用softmax函数可以把这些证据转换成概率 y:
这里的softmax可以看成是一个激励(activation)函数或者链接(link)函数,把我们定义的线性函数的输出转换成我们想要的格式,也就是关于10个数字类的概率分布。因此,给定一张图片,它对于每一个数字的吻合度可以被softmax函数转换成为一个概率值。softmax函数可以定义为:
用矩阵来表示:
实现回归模型
TF程序可以分为图的构建和图的执行两部分,而图的构建又可细分为输入图、推断图、训练图和评估图四部分。
使用TF之前,首先导入它:
import tensorflow as tf
x = tf.placeholder("float", [None, 784])
y_ = tf.placeholder("float", [None, 10])
这里的x和y不是一个特定的值,而是两个占位符(placeholder),我们在TF运行计算时输入这个值。我们希望能够输入任意数量的MNIST图像,每一张图展平成784维的向量。我们用2维的浮点数张量来表示这些图片,这个张量的形状是[None,784]。(这里的None表示此张量的第一个维度可以是任何长度的。)
W = tf.Variable(tf.zeros([784,10]))
b = tf.Variable(tf.zeros([10]))
y = tf.nn.softmax(tf.matmul(x,W) + b)
对于模型中的权重和偏置量这些参数,我们使用Variable来表示。初始化模型参数,这里我们用全为零的张量来初始化W和b。因为我们要学习W和b的值,它们的初值可以随意设置。注意,W的维度是[784,10],因为我们想要用784维的图片向量乘以它以得到一个10维的证据值向量,每一位对应不同数字类。b的形状是[10],所以我们可以直接把它加到输出上面。
我们用tf.matmul(X,W)表示x乘以W,对应之前等式里面的,这里x是一个2维张量拥有多个输入。然后再加上b,把和输入到tf.nn.softmax函数里面。这样就得到了推断结果y。
计算图的第三个要素是训练图。为了训练我们的模型,我们首先需要定义一个指标来评估这个模型是好的。其实,在机器学习,我们通常定义指标来表示一个模型是坏的,这个指标称为代价(cost)或损失(loss),然后尽量最小化这个指标。
一个非常常见的代价函数是“交叉熵”(cross-entropy)。交叉熵产生于信息论里面的信息压缩编码技术,但是它后来演变成为从博弈论到机器学习等其他领域里的重要技术手段。它的定义如下:
是我们预测的概率分布,是实际的分布(我们输入的one-hot vector)。比较粗糙的理解是,交叉熵是用来衡量我们的预测用于描述真相的低效性。
实现交叉熵:
cross_entropy = -tf.reduce_sum(y_*tf.log(y))
首先,用tf.log计算y的每个元素的对数。接下来,我们把y_的每一个元素和tf.log(y_)的对应元素相乘。最后,用tf.reduce_sum计算张量的所有元素的总和。(注意,这里的交叉熵不仅仅用来衡量单一的一对预测和真实值,而是所有100幅图片的交叉熵的总和。对于100个数据点的预测表现比单一数据点的表现能更好地描述我们的模型的性能。
现在我们知道我们需要我们的模型做什么啦,用TensorFlow来训练它是非常容易的。因为TensorFlow拥有一张描述你各个计算单元的图,它可以自动地使用反向传播算法(backpropagation algorithm)来有效地确定你的变量是如何影响你想要最小化的那个代价函数的。然后,TensorFlow会用你选择的优化算法来不断地修改变量以降低代价函数。
train_step = tf.train.GradientDescentOptimizer(0.5).minimize(cross_entropy)
在这里,我们要求TF用梯度下降算法(gradient descent algorithm)以0.5的学习速率最小化交叉熵。梯度下降算法(gradient descent algorithm)是一个简单的学习过程,TF只需将每个变量一点点地往使代价不断降低的方向移动。当然TF也提供了其他许多优化算法:只要简单地调整一行代码就可以使用其他的算法。
TF在这里实际上所做的是,它会在后台给描述你的计算的那张图里面增加一系列新的计算操作单元用于实现反向传播算法和梯度下降算法。然后,它返回给你的只是一个单一的操作,当运行这个操作时,它用梯度下降算法训练你的模型,微调你的变量,不断减少代价。
我们现在可以创建一个Session来运行模型,
sess = tf.InteractiveSession()
首先我们需要初始化所有变量,
tf.global_variables_initializer().run()
然后开始训练模型,这里我们让模型循环训练1000次!
for _ in range(1000):
batch_xs, batch_ys = mnist.train.next_batch(100)
sess.run(train_step, feed_dict={x: batch_xs, y_: batch_ys})
该循环的每个步骤中,我们都会随机抓取训练数据中的100个批处理数据点,然后我们用这些数据点作为参数替换之前的占位符来运行train_step。
使用一小部分的随机数据来进行训练被称为随机训练(stochastic training)- 在这里更确切的说是随机梯度下降训练。在理想情况下,我们希望用我们所有的数据来进行每一步的训练,因为这能给我们更好的训练结果,但显然这需要很大的计算开销。所以,每一次训练我们可以使用不同的数据子集,这样做既可以减少计算开销,又可以最大化地学习到数据集的总体特性。
最后,我们要评估模型的性能,还需要构建评估图。
首先让我们找出那些预测正确的标签。tf.argmax 是一个非常有用的函数,它能给出某个tensor对象在某一维上的其数据最大值所在的索引值。由于标签向量是由0,1组成,因此最大值1所在的索引位置就是类别标签,比如tf.argmax(y,1)返回的是模型对于任一输入x预测到的标签值,而 tf.argmax(y_,1) 代表正确的标签,我们可以用 tf.equal 来检测我们的预测是否真实标签匹配(索引位置一样表示匹配)。
correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
这行代码会给我们一组布尔值。为了确定正确预测项的比例,我们可以把布尔值转换成浮点数,然后取平均值。例如,[True, False, True, True] 会变成 [1,0,1,1] ,取平均值后得到 0.75.
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
最后,我们计算所学习到的模型在测试数据集上面的正确率。
print(sess.run(accuracy, feed_dict={x: mnist.test.images, y_: mnist.test.labels}))
这个最终结果值应该大约是92%。
其他机器学习框架
Caffe
Caffe全称为Convolutional Architecture for Fast Feature Embedding,目前由BVLC(Berkeley Vision and Learning Center)进行维护。其创始人是加州大学伯克利的Ph.D.贾杨清,后来曾在Google Brain工作,开发TensorFlow。
Caffe优点在于使用配置文件方式定义网络,容易上手。训练速度快,而且有大量训练好的经典模型。组件模块化,方便拓展到新的模型上。
Caffe最开始设计是只是针对图像,没有考虑文本、语音或者时间序列的数据,因此对卷积神经网络的支持很好,但是时间序列RNN、LSTM等支持不是很充分。要实现新的神经网络模块(Layer)时,需要用户自己写C++或CUDA代码实现正向和反向算法,对新用户有一定的难度。Caffe没有原生的分布式支持,官方仅支持单机多CPU的训练,不过有些第三方的支持,如雅虎开源的CaffeOnSpark,可借助Spark的分布式框架实现Caffe的大规模分布式训练。
Torch
Torch的定位是LuaJIT上的高效的科学计算库,其历史非常悠久,但真正发扬光大是在Facebook开源了其深度学习的组件之后。Torch与TensorFlow一样,采用了底层C++加脚本语言调用的方式,不过Torch使用的是Lua,其性能非常优秀,常见的代码通过JIT优化可以到C的性能的80%,但是相对Python并不是那么主流,对多数用户有学习成本。另外,Torch与Theano和TensorFlow采用符号编程模式不同,其采用命令式编程模式,所以实现某些复杂操作以及debug时更方便。
Keras
Keras是一个崇尚极简、高度模块化的神经网络库,使用Python实现,可以运行在TensorFlow或Theano上,旨在让用户进行最快速的原型实验。不同于Theano、TensorFlow等支持通用的数值计算,Keras专注于深度学习,它提供了目前为止最方便的API,用户只需要将高级的模块拼在一起,就可以搭建神经网络,大大降低了编程开销、Keras所有模块都是简洁、易懂、完全可配置、可任意插拔的,基本没有使用限制,神经网络、损失函数、优化器、初始化方法、激活函数和正则化等模块都可以自由组合。使用Keras,只需要几行就可以实现一个MLP,十几行就可以实现一个AlexNet。如果Theano和TensorFlow是深度学习领域的Numpy,那么Keras就是这个领域的scikit-learn。Keras最大的问题就是目前无法直接使用多GPU,所以对大规模的数据处理速度没有其他支持多GPU和分布式的框架快。
参考资料
TF开发者Sherry Moore的教程
(https://www.youtube.com/watch?v=Ejec3ID_h0w&t=2117s)
周莫烦的TF教程
(https://www.youtube.com/watch?v=2FmcHiLCwTU&list=PL2-dafEMk2A7EEME489DsI468AB0wQsMV)
Siraj的TF教程
(https://www.youtube.com/watch?v=Se9ByBnKb0o&list=PLXO45tsB95cJHXaDKpbwr5fC_CCYylw1f)
Python Machine Learning(常用机器学习算法讲解与实践 -- Sebastian Raschka)
(https://www.amazon.com/Python-Machine-Learning-Sebastian-Raschka/dp/1783555130/ref=sr_1_1?ie=UTF8&qid=1491489025&sr=8-1&keywords=python+machine+learning)
TensorFlow实战(TensorFlow实现多种机器学习算法 -- 黄文坚,唐源)
(https://item.jd.com/12125568.html)
深入浅出Tensorflow(一):深度学习及TensorFlow简介
(http://www.infoq.com/cn/articles/introduction-of-tensorflow-part01)
Programming Models for Deep Learning
(http://mxnet.io/architecture/program_model.html#symbolic-and-imperative-programs)
TensorFlow学习笔记1:入门
(http://www.jeyzhang.com/tensorflow-learning-notes.html)
图解TensorFlow架构与设计
(https://mp.weixin.qq.com/s?__biz=MzAwNDI4ODcxNA==&mid=2652244394&idx=1&sn=8c66795bc0e0d262f8defd18c07165a3)
编辑:黄继彦
李选选,清华大学工程物理系博士研究生,专业是面向计算生物学的数据分析和算法开发,对机器学习和大数据很感兴趣,希望在“数据派”结交更多的朋友,互相学习,提高自己的水平。