Google DeepMind - 推动人工智能的发展
和IBM 沃森医疗一样,DeepMind最近似乎并不顺利,名气很大,但由于种种原因实际曝光的AI产品并不多,不过并不影响其实力与地位,DeepMind与NHS医院合作开发了一款AI眼部诊断工具,通过对眼部OCT图像的扫描,可识别出50多种威胁到视力的眼科疾病,准确率高达94%,超过了人类专家的表现,相信不久会有更多的医疗领域产品,其优势就是各种资源丰富。
Enlitic - 利用深度学习使医生更快更准确
Enlitic利用深度学习从数十亿的临床案例中提炼出可操作的建议从而制定解决方案,帮助医生利用医学界的集体智慧,他们深度学习技术可以包含广泛的非结构化医疗数据,包括放射学和病理学图像、实验室结果(如血液测试和心电图)、基因组学、患者历史和电子健康记录等。他们开发的恶性肿瘤检测系统在一项临床试验中的准确度比专业的放射科医师高出了50%多,他们的优势是有极大数据资源优势和专业的数据科学家团队。
Arterys - 世界上第一个在线医学影像平台
一个真正的医学影像网络平台,以改变临床护理与诊断确定性为目标,他们的产品包括AI助手心脏MR图像分析、AI探测肺结节的分割和追踪、AI可视化助手,以及肝脏病变的纵向追踪。胸部x光检查助手等,主营业务是为医疗机构提供更精准的3D血管影像,并提供量化分析,他们的优势是有一个云分析平台,可以为用户提供SaaS分析服务,它具有可视化、可量化和深度学习三大功能。
腾讯觅影 - 腾讯的医学解决方案专家
腾讯觅影主要涉及AI影像和AI复诊,就目前AI影像来说已经能对食管癌、肺癌、糖尿病、乳腺癌、结直肠癌、宫颈癌等进行早期筛查;AI辅诊可以进行智能导诊、病例智能管理、诊疗风险监控等。他们的优势在于腾讯的AI技术能力以及大数据深度学习能力,有着丰富的自然语言理解、语音识别、交互等基础能力作为后盾。
阿里健康 – AI Doctor You ET医疗大脑
阿里健康的医疗解决方案也是平台开放式的,主要是三大平台。临床医学科研辅助平台:提供智慧病例库矩阵、临床科研数据矩阵、多源异构医疗数据处理、大数据科研辅助分析引擎开发服务等;AI医疗开放平台:面向不同设备,提供多部位、多病种AI辅助筛查应用引擎;临床医师能力训练平台:提供沉浸式医师仿真教学培训系统,脱敏病例虚拟病人等服务。其优势是基于阿里云和AI能力的强大应用拓展能力。
百度AI - 医疗大脑
百度医疗大脑的对标产品是Google和IBM的同类产品,他们通过海量医疗数据、专业文献的采集与分析进行人工智能化的产品设计,模拟医生问诊流程,与用户多轮交流,依据用户的症状,提出可能出现问题,反复验证,给出最终建议。在过程中可以收集、汇总、分类、整理病人的症状描述,提醒医生更多可能性,辅助基层医生完成问诊。他们的优势是大量的搜索引擎医疗数据和AI技术能力支撑,他们可以基于百度医疗大脑逐渐打造开放的医疗智能平台。
推想科技 - 推动科技,想医所想
推想科技主要针对肺部、心脑血管、肝癌等领域进行模型搭建,目前他们推出肺部、胸部、脑卒中辅助筛查产品和医疗影像深度学习中心,帮助医生完成个性化、差异化的深度学习,他们的优势是每日AI可以完成肺癌辅助筛查近万例,累计辅助诊断病人数已超过450万+,同时已经和超100家顶级医院合作并受到医生的一致好评。
DeepCare羽衣甘蓝 - AI口腔影像领跑者
DeepCare聚焦于口腔医学领域,目前具有公司全球首款口腔影像AI辅助分析系统,并已在口腔医院应用,正在进入基层医院、体检中心和口腔诊所,他们可以进行数据查询及管理、病灶区标记、辅助诊断并自动化生成报告等,他们的优势是团队基因比较强大,背景牛逼、专业性强。
LinkDoc - 人工智能与医疗大数据解决方案提供者
LinkDoc主要围绕医疗大数据一体化、医学影像智能诊断、标准化智能随访、一站式医学科研等提供解决方案,他们的使命是推动中国新一轮人工智能发展,让人人皆可享有精准的医疗服务,他们的优势是整合医疗机构、药企行业、保险行业、患者院外提供关联性、一体化的服务。
依图医疗 - 人工智能,关爱健康
依图六大核心业务领域分布在安防、医疗、金融、智慧园区、零售、城市等,就医疗来说,他们励志成为人工智能变革医疗领域的引领者,提升医疗生产力,扩展医疗新边界,他们的医疗智能产品解决方案主要是医疗大数据智能、临床智能决策等,包括遍布胸部、肺癌多学科、乳腺x线、乳腺超声、甲状腺超声、儿童生长发育及就诊流程等智能诊断系统,以及智能互联网医疗平台,从智能预诊、智能转诊到智能辅诊的完整服务。
第四范式-智能医疗
他们提出的是智能健康中心,从健康智能应用、中枢管理到智能组件都有所涉及,从服务层面来说,有着个人、社区、医疗机构、科研机构、保险机构健康的一体化服务,包括糖尿病、心血管病、风湿病、胰腺病智能管理等,此外他们还有平台级AI OS,为智能健康提供平台级的全生命周期管理和全方位的工具支撑,他们的优势在于平台易于使用、能力组件丰富、功能个性制定、应用运行稳定。
以上都是在AI医疗领域有一些作为的公司,事实上AI医疗领域的公司多到几百家,风口往往是浮躁的开端,尽管AI在医疗领域的应用比其他领域有一定的优势,但AI医疗发展过程中也会面临巨大的挑战,甚至出现玩了很久,最后验证出是个伪需求,或者因为实力问题而终结,到目前为止大部分的AI医疗产品都在完善中,目前还没有绝对稳定的、准确率极高的产品,只有范围值内的满意度,在AI领域,只要数据生产资料在增长、算法在优化,算力在进步,就意味着产品在精进,但这需要时间,并不是所有的AI医疗企业都能一路走到底,同时随着时间的推移竞争关系也会不断的加剧,就比如AI图像识别和AI辅助诊断,相当一部分公司都有所涉猎,如果未来找不到差异化,一地鸡毛的事情或许在AI领域也会出现。