专栏名称: 机器学习研究会
机器学习研究会是北京大学大数据与机器学习创新中心旗下的学生组织,旨在构建一个机器学习从事者交流的平台。除了及时分享领域资讯外,协会还会举办各种业界巨头/学术神牛讲座、学术大牛沙龙分享会、real data 创新竞赛等活动。
目录
相关文章推荐
爱可可-爱生活  ·  早! #早安# -20241116051234 ·  6 天前  
爱可可-爱生活  ·  NeuralDEM ... ·  6 天前  
51好读  ›  专栏  ›  机器学习研究会

【学习】用python对人们使用自行车情况分析与预测

机器学习研究会  · 公众号  · AI  · 2017-04-09 18:54

正文



点击上方“机器学习研究会”可以订阅哦
摘要
 

转自:数据挖掘入门与实战

Every computer science student is expected to know below

这篇博客中,主要用到了pandas的数据清洗和分析工作,同时也用到了sklearn中回归预测的知识,非常的简单,但是产生了较好的预测效果。所有的数据都是可以下载的,重复这些代码也是能够完全重现以上的这些结果的,如果你有疑问,那么可以参考英文原博客[blog1] [blog2],和原作者的github可以下载完整的代码和数据,


原文:

https://jakevdp.github.io/blog/2014/06/10/is-seattle-really-seeing-an-uptick-in-cycling/


https://jakevdp.github.io/blog/2015/07/23/learning-seattles-work-habits-from-bicycle-counts/



Part 1: 研究问题:

在美国西雅图市,好像人们对自行车越来越喜欢了,从越来越多的自行车俱乐部可以看出端倪。在我们的传统印象中,似乎骑自行车只是作为业余爱好,那么在西雅图是不是也是这种情况呢,自行车的使用情况随着周一到周末会有怎么样具体的变化呢,天气又对人们使用自行车的决定有多大的影响呢,下面我将尝试着回答这些问题。


Part 2:研究工具

本文使用的是python3.4+ipython notebook + pandas + numpy +sklearn,,其实以上的这些只用装一个Anaconda就可以完全解决了,数据是开源的,所有的结果是完全可重现的。


Part 3: 让数据说话

%matplotlib inline
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd

hourly = pd.read_csv(r"E:\研究生阶段课程作业\python\好玩的数据分析\SeattleBike-master\FremontHourly.csv",parse_dates=True,index_col="Date")#读入数据,同时默认“Date作为index”


hourly.sample(n = 10)  #随机抽取10行查看情况


随机抽样10行


上面的几行代码,首先是我们读入数据,这些数据可以在作者的github直接下载,https://github.com/jakevdp/SeattleBike

在这里我们读入数据的时候,做了一些小的处理,把csv文件中的"Date"字段当做日期处理。


hourly.columns = ['northbound', 'southbound']       #把列名改的简单一些,两个列名代表自行车经过时的方向。
hourly["total"] = hourly.northbound + hourly.southbound    #新加一列,计算每个时刻自行车的总数
daily = hourly.resample("d",how='sum')  #对数据框的日期按照天进行重采样,属于同一天的加在一起
weekly = daily.resample('w', how = 'sum') #对数据框的日期按照天进行重采样,属于同周的加在一起
weekly.plot()




从2013年到2014年西雅图市自行车行驶情况

从可视化结果上看,我们的第一眼直觉告诉我们,在2014年5月左右,西雅图街上的自行车最多,超过了32000/每周,上图,我们可以隐约看出来和2013年相比,2014年的自行车数量有所增加.
另外我们发现,夏天好像人们使用自行车的数量会异常的多,难道是夏天人们更愿意骑自行车吗,还是因为夏天,白昼时间会更长一些导致的呢。


原文链接:

http://mp.weixin.qq.com/s/9VXH5p8JWaagy2pO7wr8XQ

“完整内容”请点击【阅读原文】
↓↓↓