专栏名称: 北京城市实验室BCL
发布北京城市实验室这一定量城市研究网络的最新研究:城市模型、大数据、开放数据、地理计算、空间分析
51好读  ›  专栏  ›  北京城市实验室BCL

论文推荐 | 赋能未来:解析住宅建筑特征,精确预测夏季高温下的总电力消耗

北京城市实验室BCL  · 公众号  ·  · 2024-08-28 10:00

正文

导读

本期为大家推荐的内容为论文《 Powering the future: Unraveling residential building characteristics foraccurate prediction of total electricity consumption during summer heat 》( 赋能未来:解析住宅建筑特征,精确预测夏季高温下的总电力消耗 ),发表在 Applied Energy 期刊,欢迎大家学习与交流。


夏季高温期间电力消耗的增加给城市能源管理带来了重大挑战。本研究采用新颖的数据驱动自下而上机器学习方法来预测电力消耗并识别中国北京具有影响力的建筑相关特征。通过移动调查活动,我们收集了209个社区2,087栋建筑的全面电力消耗数据(24,439条记录)和详细建筑信息。我们的模型达到了高精度,在家庭层面R²为0.80(RMSE为11.77千瓦时,MAE为8.70千瓦时),在建筑层面R²为0.95(RMSE为4.56千瓦时,MAE为3.13千瓦时)。我们识别出与较高电力需求相关的具体建筑特征,包括86-221平方米的住房面积、10-25层楼高、每单元每层超过3户、超过19年的建筑年龄以及较高的房价。在社区层面,21.7%-22.3%的建筑密度和低道路网络密度与较高的电力需求相关。值得注意的是,与秋季相比,夏季工作日的电力消耗高出20.08%,周末高出21.29%。这种全面的方法为制定有针对性的能源效率策略和城市规划提供了宝贵的见解。




论文相关

题目: Powering the future: Unraveling residential building characteristics foraccurate prediction of total electricity consumption during summer heat

赋能未来:解析住宅建筑特征,精确预测夏季高温下的总电力消耗

作者: Yuyang Zhang, Wenke Ma, Pengcheng Du, Shaoting Li, Ke Gao, Yuxuan Wang, Yifei Liu, Bo Zhang, Dingyi Yu, Jingyi Zhang and Yan Li *

发表刊物:

Applied Energy

DOI:

https://doi.org/10.1016/j.apenergy.2024.124146



摘要 ABSTRACT

Elevated electricity consumption during summer heat poses significant challenges for urban energy management. This study employs a novel data-driven bottom-up machine learning approach to predict electricity consumption and identify influential building-related characteristics in Beijing, China. Through mobile survey campaigns, we collected comprehensive electricity consumption data (24,439 records) and detailed building information for 2,087 buildings in 209 neighborhoods. Our models achieved high accuracy, with R2 of 0.80 (RMSE 11.77 kWh, MAE 8.70 kWh) at the household level and R2 of 0.95 (RMSE 4.56 kWh, MAE 3.13 kWh) at the building level. We identified specific building characteristics associated with higher electricity demand, including housing sizes of 86–221 m2, floors 10–25, >3 households per floor per unit, buildings over 19 years old, and higher housing prices. At the neighborhood level, a building density of 21.7%–22.3% and low road network density were linked to higher electricity demand. Notably, summer electricity consumption was 20.08% higher on workweeks and 21.29% higher on weekends compared to autumn. This comprehensive approach provides valuable insights for targeted energy efficiency strategies and urban planning.



论文展示(部分)







请到「今天看啥」查看全文