专栏名称: R语言与水文生态环境
本账号依托水文生态研究中心,分享水文地质、环境科学相关文献情报;科普环境、地学知识!
51好读  ›  专栏  ›  R语言与水文生态环境

【文献情报】| Water Research |季节变化和水文管理调节梯级筑坝中的养分运输:碳和氮同位素的见解!

R语言与水文生态环境  · 公众号  ·  · 2024-12-10 00:02

正文

点击蓝色字体 关注我们


(一)基本信息
  • 期刊: Water Research

  • 中科院分区: 1区 环境科学与生态学

  • 影响因子(IF):11.4

(二)作者信息
  • 第一作者:Yujing Yang

  • 通讯作者:Wanfa Wang

  • 第一作者单位:Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China

  • 原位连接:https://doi.org/10.1016/j.watres.2024.122894

(三)文章亮点
  • (1)梯级水库营养盐浓度的季节性变化可以通过大坝运行进行显著调节;

  • (2)HJD水库在丰水期充当养分汇,而在枯水期则交替成为养分源;
  • (3)梯级水库的水文管理放大了上游至下游营养盐通量的差异。
(四)摘要
世界各地的水库显著改变了河流中营养物质的自然输送。然而,梯级筑坝对这些营养盐的迁移、转化和环境后果的具体影响尚不清楚。为了解决这一问题,我们分析了乌江沿岸7个梯级水库的水化学、营养盐浓度、溶解无机碳稳定同位素( δ13CDIC )和硝酸盐同位素( δ15N-NO3 - )的时空变化,每个水库具有不同的调节机制。本研究发现,湿季( WS、春季和夏季)的总氮( TN )、总磷( TP )和二氧化硅( SiO2 )浓度的平均绝对变化量分别是干季( DS、秋季和冬季)的2.4、1.4和1.1倍。在WS期间,洪家渡水库对TN、TP和SiO2的平均表观截留效率( * RETf )分别为97 %、98 %和95 %,表明梯级水库对营养盐的大量消耗。相反,在DS期间,TN、TP和Si O2的* RETf值为负值,表明水库内部存在明显的营养盐积累。乌江梯级水库下游释放的营养盐通量明显大于上游入库通量。这些发现有助于说明梯级水库下游流量如何放大大坝建设引起的营养盐通量差异。我们的研究增进了对梯级大坝建设如何影响营养盐动态的理解,支持了水库调度模型的优化,并推进了科学的水资源管理和保护工作。
(五)图文赏析

Fig. 1. The land use types in the Wujiang watershed and sampling points in the study area. The capital letters represent different regions: BJ for Bijie, ZY for Zunyi, GY for Guiyang, TR for Tongren, YY for Youyang, PS for Pengshui, QJ for Qianjiang, WL for Wulong, FL for Fuling, and NC for Nanchuan.Population density and fertilizer usage are indicated for specific areas.

Fig. 2. Longitudinal variations of NO 3 - -N, HN4 +-N, NO 2 - -N, TN, PO 4 3 +-P, TP, and SiO 2 concentrations of surface waters along the Wujiang River. Winter (a, e), spring (b,f), summer (c, g), and autumn (d, h). The x-coordinate represents the surface water samples at sampling points from W1 to W29.

Fig. 3. Variations of (a) DCO 2 concentrations, (b) δ 13 C DIC , and (c) δ 15 N-NO 3 - of surface waters across the Wujiang cascade reservoirs.

Fig. 4. Depth profiles of NO 3 - -N, HN 4 +-N, TN, PO 4 3 +-P, TP, and SiO 2 of seven reservoirs in the wet season (spring and summer) and the dry season (autumn and winter). E, epilimnion (0.5, 5 m); T, thermocline (10, 15, 20 m); H, hypolimnion (30, 45, 60 m).

Fig. 5. (a) Relationship between Δδ 13 C DIC and Δδ 15 N-NO 3 −in depth profiles from seven reservoirs. The four quadrants represent different processes influencing Δδ 13C DIC and Δδ 15 N-NO3 −. The outline color of the circles denotes different reservoirs, while the fill color indicates the values of DSi:HCO 3 - . The stoichiometric limitation analysis of P (b) and CO 2 (c) in the Wujiang cascade reservoirs, DIN:DIP > 20, DCO 2 :DIP > 166 for P limitation; DIN:DCO 2 > 0.12, DIP:DCO 2 > 0.006 for CO 2limitation, and the ratios are mole ratios ( Sterner et al., 2008 ).

Fig. 6. The variation of NO 3 - -N, HN4 +-N, TN, PO 4 3 +-P, TP, and SiO 2 concentrations in seven reservoirs across different seasons.

Fig. 7. The variation of Δ TN, Δ TP, dN, and dP in different seasons in seven reservoirs, with units in µ mol/L. Each group exhibits a non-significant difference from the t -test.







请到「今天看啥」查看全文