专栏名称: R语言与水文生态环境
本账号依托水文生态研究中心,分享水文地质、环境科学相关文献情报;科普环境、地学知识!
目录
相关文章推荐
河北交通广播  ·  【992 | ... ·  昨天  
河北交通广播  ·  【992 | 快讯】普京:俄罗斯同意停火30天 ·  2 天前  
河北交通广播  ·  【992 | ... ·  3 天前  
51好读  ›  专栏  ›  R语言与水文生态环境

【文献情报】|Water Resour. Res.|植被恢复对中国黄土高原水分再循环和降水趋势的影响!

R语言与水文生态环境  · 公众号  ·  · 2024-12-17 00:02

正文

点击蓝色字体 关注我们

(一)基本信息
  • 期刊: Water Resources Research

  • 中科院分区: 1区 地球科学

  • 影响因子(IF):4.6

(二)作者信息
  • 第一作者:Mingzhu Cao

  • 通讯作者:Weiguang Wang

  • 第一作者单位:The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, China

  • 原位连接:https://doi.org/10.1029/2024WR038199

(三)文章亮点
  • (1)利用水汽追踪模型识别了中国黄土高原降水的水汽来源及其变化;

  • (2)局地再循环水汽对黄土高原降水的贡献从1982 - 1999年的6.9 %增加到2000 - 2019年的8.3 %;
  • (3)2000 - 2019年,区域绿化对降水的促进作用约为0.83 mm yr-1,而本地植被对降水的促进作用约为0.07 mm yr - 1。
(四)摘要
近几十年来,由于植被恢复的努力,中国黄土高原经历了令人瞩目的绿化趋势。然而,降水对这种绿色化的响应尚不确定。本研究利用水汽追踪模型、改进的WAM - 2layers模式和降水集雨的概念框架,识别和评估了1982 - 2019年黄土高原降水的主要水汽源区。通过将多元线性回归分析与概念性水文加权方法相结合,我们量化了不同环境因子对降水的有效影响,特别是植被的影响。我们的分析表明,在植被恢复工程启动后的2000 - 2019年期间,当地的降水量平均增加了0.16 mm yr-1,蒸发量平均增加了5.17 mm yr - 1。包括黄土高原在内的区域绿化对降水的贡献约为0.83 mm yr-1,其中本地绿化对降水的贡献约为0.07 mm yr - 1。当地植被的贡献是由于当地蒸发量的增加以及当地水分再循环( 1982 - 1999年为6.9 % ; 2000 - 2019年为8.3 %)的增加。因此,我们的研究表明,局地植被恢复对局地降水有积极影响,黄土高原观测到的降水增加的主要原因是由于局地绿化和环流变化的共同作用。我们的研究强调,黄土高原地区植被的增加对当地降水产生了强烈的影响,并支持了当前和未来植被恢复计划对更有弹性的水资源管理的积极影响。
(五)图文赏析

Figure 1. Location of the Loess Plateau. (a) The simulation domain which is the source area in our study. The color shading denotes the Leaf Area Index (LAI) (m 2 m 2 ) for 2018 from the GLASS data sets. (b) The topography of Loess Plateau which is the sink area. The black triangles show the locations of the China Meteorological Administration (CMA) stations.

Figure 2. The conceptual diagram for this study. The flowchart of this study. P, Precipitation; E, Evaporation; ER, Local recycled moisture; P o , Precipitation originated from oceanic sources; P t , Precipitation originated from terrestrial sources; ε , Evaporation recycling ratio; ω , Contribution ratio; LAI, Leaf Area Index; RH, Relative humidity; Ta, Air temperature; Rn, Net radiation; SM, Soil moisture; WS, Wind speed; NINO, Niño3.4 SST Index; DMI, Dipole Mode Index; LP, Loess Plateau.

Figure 3. Spatial distribution of (a–c) the linear trend of averaged LAI for the annual, rainy season, and dry season after the Grain for Green Project (2000–2019), and (d–f) time series of regional averaged LAI over the entire Loess Plateau. Black dots and stars indicate that the trend is significant (Mann‐Kendall test, p ‐value < 0.05).

Figure 4. Time series of regional averaged (a) precipitation ( P LP ) , (b) evaporation ( E LP ) , (c) locally recycled moisture ( ER LP ) , (d) evaporation that flows out of the Loess Plateau ( E out ), (e) contribution ratio ( ω LP ) and (f) evaporation recycling ratio ( ε LP ) for the entire Loess Plateau. Blue lines represent trends before and after the Grain for Green Project (none of them are significant). Shaded areas denote the spatial standard deviation. Star indicates that the trend is significant. The year 1992 was removed from the time series in this study, because the precipitation data for that year were anomalous high (Figure S2 in Supporting Information S1 ).

Figure 5. Spatial distribution of (a–c) mean annual recycled moisture (ER), contribution ratio ( ω ), and evaporation recycling ratio ( ε ) during 2000–2019; (d–f) the difference in mean annual ER, ω , and ε before and after the project; (g–i) the linear trend of ER, ω , and ε during 1982–2000; (j–l) the linear trend of ER, ω , and ε during 2000–2019.

Figure 6. Precipitationsheds of (a–c) the annual, rainy season and dry season during 1982–2019. The pie charts show the percentage of different moisture sources. (d–f)The difference in precipitationshed before and after the project. Bars on the right display the area change of the precipitationshed, and bars at the bottom show the changes of the moisture from different sources that comprise precipitation on the Loess Plateau before and after the project (land* means land excluding the LoessPlateau).

Figure 7. The importance of LAI on water cycling in Loess Plateau, ranked by the Stepwise Selection method. The plus sign(“ + ”) denotes the forward selection and the minus sign (“ ”) denotes backward selection. P LP , E LP , and ER LP represent the variance of the regional‐averaged P , E and ER , which were calculated as the differences between the values of successive years.

Figure 8. The attribution of environmental factors to the change of P LP , E LP , and ER LP .

Figure 9. The trends of the regional effective values ( X All ), regional averaged values( X LP ) and local effective values ( X LP ) for different variables.

Figure 10.







请到「今天看啥」查看全文