本文主要给出MATLAB和
Python对矩阵
的处理。因为
python
是面向对象的,操纵起来会更接近人的正常思维;而MATLAB大多是以函数实现的,是向对象施加的一个操作。比如,A是一个矩阵,它有一个属性attr。用Python更可能是A.attr,而用MATLAB更可能是attr(A)。
一、
主要内容有:
1.矩阵运算:加减乘除、转置、逆矩阵、行列式、矩阵的幂、伴随矩阵;2.矩阵分块、秩、迹;3.解方程;4.线性相关;5.向量空间;6.特征值和特征向量;7.对称、相似;8.二次标准型;9.线性空间和基变换;10.正交空间;11.
矩阵对角化;13.矩阵分解;14.重要数字特征。
二、MATLAB的处理
1.建立矩阵
MATLAB中,矩阵是默认的数据类型。它把向量看做1×N或者N×1的矩阵。
%建立了一个行向量,不同元素之间使用空格或者逗号分开都是可以的。
A=[1,2,3]
或者
A=[1 2 3]
%建立一个矩阵,使用分号隔开不同的行。
A=[1,2,3;4,5,6]
%那么,建立一个列向量就好办了。每行一个元素,分号分开即可。当然也可以使用行向量的转置(一个撇号表示转置)。
A=[1;2;3]
或者
A=[1,2,3]’
MATLAB内置了很多特殊的矩阵生成函数,建立特殊矩阵十分方便。
i)第一组用来生成特殊规则的矩阵。如全零、全一、随机、等步长等形式。
X=zeros(m,n)
%生成一个m*n的全0矩阵。同理,
ones(m,n)
生成一个全1矩阵;
eye(m,n)
生成一个单位阵。它们的重要作用在于预先分配矩阵空间,所以,在预知矩阵规模但是不知道矩阵具体数据的情况下,先用这几个函数生成一个矩阵,对提高运算速度十分有用。
X=rand(m,n)
%生成一个平均分布的随机矩阵,数值区间[0,1]。同理,
randn(m,n)
生成一个服从正态分布的随机矩阵。注意,这些所谓的随机实际上都是伪随机。
v=linspace(a,b,n)
%产生线性空间矢量。a和b分别是起点和终点,n是本区间内的点数,默认100个点。同理,
logspace(a,b,n)
产生对数空间矢量。不过它默认点数是50个。
v=1:0.1:10
%产生一个线性的矢量。规格是---起点:步长值:终点
ii)第二组用来在原有矩阵基础上获得一个具有某些特征的矩阵。
X=diag(v,k)
和
v=diag(X,k)
%
前者用矢量v中的元素生成一个对角矩阵,k是对角移位因子,默认为0,即主对
角。k>0,对角线右移。后者返回矩阵X的对角元素,存在矢量v中。k的意义相同。
X1=triu(X,k)和X1=tril(X,k)
%分别产生矩阵X的上三角矩阵和下三角矩阵。
fliplr(X)/flipud(X)/rot90(X)
%这都是对矩阵的翻转操作,获得新的矩阵。分别是左右翻转(left-right)、上下翻转(up-down)和逆时针旋转90°操作。
iii)第三组用来生成一些具有理论价值的,往往是以数学家命名的矩阵。
magic(n)
生成行列相加均为同一个数字的方阵。
pascal(n)
生成帕斯卡尔矩阵。
hilb(n)
生成希尔伯特矩阵。
vander(v)
生成范德蒙德矩阵。等等。
这些矩阵一般都有相应的学术背景,用到的时候,可以用命令help elmat在最后一个栏目中看看有没有自己要找的特殊矩阵,如果有,点进去进一步研究即可。
2.矩阵的特征信息
size(X)
%获得矩阵X的行、列数。比如,X是一个3*5的矩阵,p=size(X)返回p=[3 5]
length()
%对于矢量,返回的是矢量的长度;对数组,返回的是数组最长的那一个维度的长度。
ndims()
%相当于
length(size(x))。
numel()
%数组中元素的个数。
isempty()
和
isequal()
等
is*
型函数
%测试矩阵是否满足某些条件
[V,D] = eig(A)
%矩阵A的特征值D和特征向量V。
k = rank(A)
%矩阵A的秩
b = trace(A)
%矩阵A的迹,即对角线元素之和
d = det(X)
%方阵A的行列式
Y = inv(X)
%矩阵X的逆矩阵
n = norm(X,option)
%矩阵或者向量的范数,具体使用用到再说
c = cond(X)
%矩阵X的条件数
3.矩阵分解
矩阵分解是矩阵论的重要内容。常用的分解形式在MATLAB中都有函数予以实现,并且有些分解考虑了多种情况。常见的如:eig()、qr()、schur()、svd()、chol()、lu()等。具体使用的时候
4.矩阵运算
MATLAB默认的是矩阵运算,所以如果想要按元素依次计算,在原来运算符前加一个.号。比如.*表示按元素相乘。
每一个运算符都有一个对应的函数。如:
A+B=plus(A,B)、A-B=minus(A,B)
A*B=mtimes(A,B)、A.*B=times(A,B)
A/B=mrdivide(A,B)、A./B=rdivide(A,B)、A\B=mldivide(A,B)、A.\B=ldivide(A,B)
A^B=mpower(A,B)、A.^B=power(A,B)
A'=ctranspose(A)、A.'=transpose(A)
其中的前缀m自然是表示matrix的意思。没有m前缀的就是按元素进行的意思。最后那个转置操作,c前缀表示的是按照复数操作进行转置。
此外,还有一些比较常用的运算:
C=cross(A,B)
%矢量叉乘。类似的,C=dot(A,B)
是矢量点乘
B = prod(A,dim)
%数组元素的乘积,默认按列计算。dim=1是列,dim=2是按行。这个概念很重要!!
类似的,B = sum(A,dim)
求数组元素的和。dim意义和以上同。
expm()
%矩阵指数运算。与此类似的
logm(), sqrtm()。
其中,
funm(A,fun)
用来计算矩阵A对通用函数fun的函数值。
5.矩阵索引
选择使用矩阵中的某些元素,就是所谓的矩阵索引了。
A(:,j)
%选取矩阵A的所有行,第j列,同理,A(i,:)是第i行,所有列
A(:,j:k)
%所有行,第j列至第k列(起点和终点均含)
三、Python的处理
Python使用NumPy包完成了对N-维数组的快速便捷操作。使用这个包,需要导入numpy。SciPy包以NumPy包为基础,大大的扩展了numpy的能力。为了使用的方便,scipy包在最外层名字空间中包括了所有的numpy内容,因此只要导入了scipy,不必在单独导入numpy了!但是为了明确哪些是numpy中实现的,哪些是scipy中实现的,本文还是进行了区分。以下默认已经:import numpy as np 以及 impor scipy as sp
下面简要介绍Python和MATLAB处理数学问题的几个不同点。
1.MATLAB的基本是矩阵,而numpy的基本类型是多为数组,把matrix看做是array的子类。
2.MATLAB的索引从1开始,而numpy从0开始。
1.建立矩阵
a1=np.array([1,2,3],dtype=int)
#建立一个一维数组,数据类型是int。也可以不指定数据类型,使用默认。几乎所有的数组建立函数都可以指定数据类型,即dtype的取值。
a2=np.array([[1,2,3],[2,3,4]])
#建立一个二维数组。此处和MATLAB的二维数组(矩阵)的建立有很大差别。
同样,numpy中也有很多内置的特殊矩阵:
b1=np.zeros((2,3))
#生成一个2行3列的全0矩阵。注意,参数是一个tuple:(2,3),所以有两个括号。完整的形式为:zeros(shape,dtype=)。相同的结构,有
ones()
建立全1矩阵。
empty()
建立一个空矩阵,使用内存中的随机值来填充这个矩阵。
b2=identity(n)
#建立n*n的单位阵,这只能是一个方阵。
b3=eye(N,M=None,k=0)
#建立一个对角线是1其余值为0的矩阵,用k指定对角线的位置。M默认None。
此外,numpy中还提供了几个like函数,即按照某一个已知的数组的规模(几行几列)建立同样规模的特殊数组。这样的函数有
zeros_like()、empty_like()、ones_like(),
它们的参数均为如此形式:zeros_like(a,dtype=),其中,a是一个已知的数组。
c1=np.arange(2,3,0.1)
#起点,终点,步长值。含起点值,不含终点值。
c2=np.linspace(1,4,10)
#起点,终点,区间内点数。起点终点均包括在内。同理,有logspace()函数
d1=np.linalg.companion(a)
#伴随矩阵
d2=np.linalg.triu()/tril()
#作用同MATLAB中的同名函数
e1=np.random.rand(3,2)
#产生一个3行2列的随机数组。同一空间下,有randn()/randint()等多个随机函数
fliplr()/flipud()/rot90()
#功能类似MATLAB同名函
数。
xx=np.roll(x,2)
#roll()是循环移位函数。此调用表示向右循环移动2位。
2.数组的特征信息
先假设已经存在一个N维数组X了,那么可以得到X的一些属性,这些属性可以在输入X和一个.之后,按tab键查看提示。这里明显看到了Python面向对象的特征。
X.flags
#数组的存储情况信息。
X.shape
#结果是一个tuple,返回本数组的行数、列数、……
X.ndim
#数组的维数,结果是一个数
X.size
#数组中元素的数量
X.itemsize
#数组中的数据项的所占内存空间大小
X.dtype
#数据类型
X.T
#如果X是矩阵,发挥的是X的转置矩阵
X.trace()
#计算X的迹
np.linalg.det(a)
#返回的是矩阵a的行列式
np.linalg.norm(a,ord=None)
#计算矩阵a的范数
np.linalg.eig(a)
#矩阵a的特征值和特征向量
np.linalg.cond(a,p=None)
#矩阵a的条件数
np.linalg.inv(a)
#矩阵a的逆矩阵
3.矩阵分解
常见的矩阵分解函数,numpy.linalg均已经提供。比如cholesky()/qr()/svd()/lu()/schur()等。某些算法为了方便计算或者针对不同的特殊情况,还给出了多种调用形式,以便得到最佳结果。
4.矩阵运算
np.dot(a,b)用来计算数组的点积;vdot(a,b)专门计算矢量的点积,和dot()的区别在于对complex数据类型的处理不一样;innner(a,b)用来计算内积;outer(a,b)计算外积。
专门处理矩阵的数学函数在numpy的子包linalg中定义。比如np.linalg.logm(A)计算矩阵A的对数。可见,这个处理和MATLAB是类似的,使用一个m后缀表示是矩阵的运算。在这个空间内可以使用的有cosm()/sinm()/signm()/sqrtm()等。其中常规exp()对应有三种矩阵形式:expm()使用Pade近似算法、expm2()使用特征值分析算法、expm3()使用泰勒级数算法。在numpy中,也有一个计算矩阵的函数:funm(A,func)。
5.索引
numpy中的数组索引形式和Python是一致的。如: