专栏名称: 数盟
数盟(数据科学家联盟)隶属于北京数盟科技有限公司,数盟致力于成为培养与发现“数据科学家”的黄埔军校。 数盟服务包括:线下活动、大数据培训。 官网:http://dataunion.org,合作:[email protected]
目录
相关文章推荐
大数据分析和人工智能  ·  人到中年才懂:能上班是福气 ·  3 天前  
软件定义世界(SDX)  ·  工业大模型的演进及落地方向 ·  2 天前  
软件定义世界(SDX)  ·  与孙正义对话,Sam ... ·  3 天前  
数据派THU  ·  【ICLR2025】AdaWM:基于自适应世 ... ·  4 天前  
51好读  ›  专栏  ›  数盟

鲍捷:人工智能的可演进性,要从小事做起

数盟  · 公众号  · 大数据  · 2017-05-25 22:07

正文

职人社 × 爱因互动联合主办的「 AI 时代的产品经理 」活动上,我们邀请了爱因互动创始人 CEO 王守崑,文因互联 CEO 鲍捷以及 S 先生创始人 Mingke 三位老师,分享交流了人工智能在怎样影响业态,真正的 AI 产品经理的角色,产品的对话式交互( CUI,Conversation UI )特性以及产品经理在 AI 时代下技能边界在哪里等话题。



鲍捷博士有十余年的人工智能研究经验,研究领域有神经网络、知识表现与推理、语义网、机器学习、自然语言处理等。中国中文信息学会语言与知识计算专委会委员。历任美国三星研发中心研究员,连续创业者。也曾是 MIT (麻省理工学院)访问研究员,BBN 访问研究员,RPI 博士后,Iowa State University 博士,W3C Web 本体语言工作组成员,国际语义网会议 ISWC组委会和程序委员会成员。


文因互联脱胎于一个硅谷车库创业公司 Memect。2013 年,鲍捷和一些人工智能研究者一起,开始探索如何把知识图谱技术应用于日常生活。文因互联的初始愿景是「互联世界的记忆」( Memory Connected,也就是 Memect 这个缩写词的来源),也就是为每一个人管理自己的「第二记忆」以弥补生物记忆的不足。


Memect 先是为程序员管理「记忆」,做出了 10W+ 用户的 AI 产品「好东西传送门」。后来落地到金融领域,面向投资经理、研究员,开发了弥补人力在金融决策过程中的效率有限、经验不足问题的一款产品。现在,文因互联为银行、券商和投资基金提供取代传统低效的人工劳动的金融分析工具和解决方案。


以下是鲍捷老师分享内容的编辑整理,关注职人社然后回复关键词 「文因互联 」四个字可以获得鲍捷老师的分享完整 PPT。



「我有一个好想法,就差一个 AI 了」  ▼

今天我特别想跟大家分享一下,人工智能产品在「演进」上的一些体会。


人工智能产品一个核心特点就是 「演进」 。也就是说「你很难一下子达到那个地方」,这可能是与传统的互联网产品很不一样的地方。


互联网已经存在很多年了,在产品经理的人才积累上大概已经过 10 万的数量级了吧。对比国内人工智能的导师储备也不过数百人,国内人工智能相关专业出来的研究生可以估算不会太多。这里面有多少会成为人工智能工程师呢?人工智能产品经理就更少了。


所以,在中国现在做人工智能的产品,跟我们以前做互联网的产品很不一样。单从人才供给来说,无论是产品经理、工程师,还是往上一层的架构层面的人,都只是传统互联网 1/10 到 1/100 这样的数量级。


工程领域有一个原则,任何系统的架构你设计得再好,当系统面对的问题规模的数量级上升,或者下降,这个架构就会出问题。那么,我们互联网、移动互联网上的产品设计经验是为过去的规模的问题所设计的,我们现在碰到了新问题,还可以用原来的方法来做吗?我觉得肯定是不一样的。今天就来探讨几个不一样的地方。


现在很多人在传播这种焦虑感——人工智能要颠覆这个、要颠覆那个。我昨天看到微软 AI 负责人沈向阳老师在说计算机视觉识别系统要在 10 年之内识别所有的东西。过去我们常说「我有一个好想法,就缺一个程序员/产品经理了」,今年大家都改口「我的想法就缺 AI 了」。


但人工智能对社会的颠覆其实还没有发生,并且这个颠覆没那么容易发生的。因为人工智能的资源是很稀缺的。稀缺资源造成现在组建一个人工智能团队,就一个字——「贵」。现在一个北清毕业的博士的入门价格 BAT 能给他开到 60万*。过去我有看过其他人的团队预算,十个人的机器学习团队,初期需要投入上千万。由于人才的稀缺,决定了这个风险不但来自于业务更来自于团队本身,少了任何一个人都很填上这个坑。

* 编者注:具体数字有待证实

人工智能的技术局限 ▼

其实,目前的 AI 技术并不是那么靠谱,还是不成熟的。人工智能已经经历了两次大型 AI 寒冬了,小的冬天不计其数,我就经历过其中两次小寒冬(神经网络和语义网)。这次的热潮还会不会有冬天?有人说不会,但我已经被咬两次了,我不敢这么乐观。


因为人工智能现在还是人工智障的成分居多。我们做产品,更多是从人工智障开始做的。


2000 年,我在MIT研究期间的导师 Tim Berners-Lee(注:英国计算机科学家、万维网的发明者,南安普顿大学与 MIT 教授) 曾告诉大家,未来会是语义网**的。当时实验室成果让大家很乐观地认为可能 10 年之内就能在消费者领域实现语义网。2001 年他在 《科学美国人》相关领域中的描述的产品就很像是 Siri***,但当我们做了 10 年以后,我们发现我们远远低估了这个开发难度。现在 16 年过去了,我们还是没有达到他描述的对话机器人的技术水准。

**编者注:语义网是对未来网络的一个设想,现在与 Web 3.0 这一概念结合在一起,作为 3.0 网络时代的特征之一。简单地说,语义网是一种智能网络,它不但能够理解词语和概念,而且还能够理解它们之间的逻辑关系,可以使交流变得更有效率和价值。语义网核心是:通过给万维网上的文档 (如:HTML文档、XML文档)添加能够被计算机所理解的语义「元数据」(外语:Meta data),从而使整个互联网成为一个通用的信息交换媒介。

*** 编者注:2011年 10 月,Siri 才与 Iphone 4s 一起上市。


所以我们今天看到的很多的事情,比如知识图谱、深度学习,从一开始的一个想法,到工程上、到产品上,最后落地到商业上是一个很漫长的历程,通常需要 30 到 40 年。所以当我们看到一些实验性的成果时,我们应该把自己的兴奋压一压,因为这中间有很多不靠谱的坑。


人工智能的技术瓶颈不是要代替智人作为动物的那一部分,而在于代替我们最近几千年发展起来的那些认知能力,也就是我们有了符号思维能力之后的智能。 在学术上体现在,深度学习这种算法在不同领域上起到的改变是不一样的,它可以让语音和图像的识别能力前进了一大步,但是在自然语言处理或是知识图谱这方面的提高只有 1-2%。比如说,假设传统的自然语言分词算法可以达到 88% 的正确率,那么深度学习算法在准确率上可能做到 89-90%。但是深度学习可以把视觉识别的准确率提升了 10-20%。


为什么会有这种区别呢?


原因是「识别」这件事情是哺乳动物的智能,不仅仅限于人类。你家的小猫小狗会识别出你跟别人不一样。深度学习可以在这种自然能力的处理上有很不错的表现。但是语言和文字这种符号思考能力是近几千年历史上发展出来的,跟传统的信号处理能力非常不一样。


所以,现在的算法是有局限性的,我们在构建人工智能系统的时候要理解它的局限性。


关注路径,而非直奔目标 ▼

移动时代互联网产品经理培养的直觉是:刚需、极致。但是在人工智能领域,这样直奔主题的直觉未必能成功。 人工智能产品的复杂性,决定了产品的设计核心在于它的中间路径而非最终目标。


我们移动互联网时代在制定项目的时候,常会先有一个明确的目标。但是怎么完成一个项目不是由目标所决定的,是路径决定的。


一群老鼠开会要做风控,猫来抓老鼠之前做一个预警。怎么做呢?大家定了一个明确的目标,在猫脖子上系铃铛。问题是,哪只老鼠来做这件事呢?怎么做呢?


这就是路径。


路径有很多层含义。


别人的目标不是你应该效仿的终点,别人的路径更不是你要效仿的路径。 BAT 的终点不是你的终点。我刚开始创业的时候,特别喜欢看别的架构师的那些架构,认真地做笔记,但当我开始认真搭建自己项目的架构时,我还是不知道这个逻辑是什么,为什么这么搭。因为整个项目的演进过程中,最重要的事情不是最终公布出来的那些,而是没有被公布出来的。你最终学习到的都是一些切片,无论是他的终点、还是所谓的路径,其实都是他 90% 预想的路径被否定之后的一些切片。


探索新生事物的过程中,「被否定的痛苦」,才是真正的核心竞争力。


痛苦是不可复制的。 哪怕是我们在学习别人总结经验、路径形成的方法论。方法论的复制,也是建立在海量的痛苦当中。我们都知道找到实现目标的路径很关键,但是没有人会告诉你路径在哪里,只有靠自己去摸索。即使是「元方法论」(Meta 方法论),也只能帮助我们在海量的不确定因素中,去找到几个确定的点,减少死亡的概率。


AI 产品路径设计方法论 ▼


成本问题。 我们在设计人工智能产品的时候,会有种种不靠谱的因素在制约产品。我们只有快速的迭代,Lean startup(精益创业) 降低成本,才能提高我们的成活率。尽管互联网产品和 AI 产品不一样,但是快速迭代是一个通用的方法论。


不确定性拆分。 把大的不确定性切成小的,切成小的不确定性。这个方法可以帮助我们在人工智障中寻找到人工智能。


必须有业务基础系统。 像我这种技术出身的人,都会有一个做伟大的人工智能系统的梦想。但实际上数据库系统跟智能系统有什么区别?其实者两者在角色上是非常接近的,他们都是一种支持系统,支持系统是没办法离开基础业务去独立工作的。


如果说真正好的产品是一块蛋糕,那里面的精华一定是基础业务系统;人工智能系统可能连一个糖衣都算不上,它可能是蛋糕顶上的那个小樱桃。2016 年某银行花了一年的时间来做出一个大数据系统,系统有丰富AI模块但内部业务部门都不愿意用。这里面只有报表系统,把 Excel 的 Copy、Paste 功能做进去了,真正打中了刚需,然后业务部门才逐渐接受了智能的附加功能。


中间节点是在考验所有人的耐心。 由于人工智能系统不靠谱、周期长,所以一个人工智能系统从投入到产出中间要有很长的周期,内部、外部、包括投资人在内的参与方的耐心很容易耗尽。怎么在耗尽之前达到中间节点?这里面最大的风险,并不是来自于技术,而是怎么做好中期管理。


做人工智能的产品,不要直奔主题而去。做金融,就不要直接去做投资研究系统。做医疗,不要直接做诊断系统。做招聘,不要直接做人才匹配系统。直奔主题的失败不是特例,很多大公司都是上来就做一个特别大的系统, 90% 都会失败。


AI 产品特性:可演进性 ▼


人工智能系统是非常复杂的系统。但是复杂在英文中有两种表达方式,Complex 和 Complicated,这两种是不一样的。移动互联网产品是一个 Complex 的系统,而人工智能应用,可以类比生物,是由千亿个小元件精细配合完成的,是 Complicated 系统。Complex 的系统强调的是Scalability,规模能力,扩张能力。而人工智能产品需要的是 Evolvability 可演进性。类比而言,一百亿个草履虫组合在一起不能合成一个人,但人工智能系统也是需要从细胞开始进化的。


人工智能系统的设计方法论要根根据这个区别去做改进。


盖尔定律说,一个复杂系统是没法自顶之下进行设计的;如果一个复杂系统从一开始的设计不是切实可行的,那么到后面的修修补补也是无法让它切实可行的;复杂系统必须从一个切实可行的简单系统重新开始做。


从顶向下去设计的复杂系统无一例外都会是失败的。一个切实可行的复杂系统势必是从很多个切实可行的简单系统发展而来的。在大公司里面可能需要你交付一个预算是 2、3 亿的复杂产品,失败了也就是失败,当成本摊薄之后可能是可以过日子的。但是这个成本对于创业公司来说,是不可能实现的。在过去将近 20 年的时间里,我做过很多 AI 相关的项目,大部分都悲惨失败了。我在现在的项目(文因互联)里,有很多具体的小尝试,有些还是失败的。但我们可以把大的失败、切分成小的失败,让每一个失败都成为离成功更进的垫脚石。这是让 AI 产品落地的根本。


那么, AI 公司可以交付什么?


我们有四种选择——零件、工具、解决方案、系统。我们在实际解决问题的时候,我们很难交付一个复杂的系统。优秀的 AI 创业者不约而同地选择一种路径,为了设计实现一个通用系统,不得不先做包工头,做了一个一个的解决方案,从解决方案里面总结一个系统出来。


好的产品是总结出来的,并不是设计出来的。我们从具 体的小事情开始做起来,当我们完成了 10 个解决方案的时候,我们或可以从当中总结出一个系统出来。当我们连解决方案都找不到时,我们就需要从零件、工具开始做起来的。


每一个产品的背后都是有科技树的。 一个产品首先需要很多零件去制造工具,没有工具就没有解决方案,没有解决方案就没有系统。 以火车铁路系统为例,铁路在火车出现之前就存在了,后来出现蒸汽机之后又经过了瓦特的改良,过了很长一段时间才有了火车发动机。在这个案例里,零件——平行运动连杆、工具——蒸汽机、解决方案——矿山抽水,最后就有了系统——火车铁路系统。就像蒸汽机一开始也不是应用在火车上,而是矿山抽水系统上。一个解决方案产生价值的时候,你会想象不到,后面会有什么机会发生。


再比如,我们现在在微信上实现的电视电话,跟我们20年前设计的解决方案也是不一样的。我们当时的电子工程师,想的是怎么能够设计一套编码系统,让视频电话在电视系统里跑起来。我们在设计这个方案的时候连 CCD (图像传感器)也不够成熟,我们设计了一系列的光学的模拟信号去实现这件事。在这个案例里面,零件—— CCD 图像传感器,工具——摄像头,解决方案—— PC 视频聊天,最后就有了系统——「电视电话」。每一个工具、每一个理念,都有它当时的作用,在构造一个系统的时候,我们把这些中间节点找到他们的应用场景,然后去培育这个技术。这是所有复杂系统的统一的规律。


产生伟大的AI公司需要可演化的产品。 直奔市场、用户、需求所要求的主流刚需而去,就是让 AI 产品失败的保证书。


其实不仅是AI公司, 「演进」 也是很多更早的互联网公司的特点。雅虎是从分类目录开始做的,两个创始人 8 个月时间,手工地做出来了分类目录,巨头完全看不起。后来他的网站演化成了门户。而一个从一开始就想做门户的公司,花了 600 亿美金才明白这个道理。这就是 AT&T 的故事,早期的虚拟的互联网接入服务供应商(ISP) 之一,在没有 Web (1990 年面市)之前,就做了订票、天气等应用。 当  Web  开始出现的时候,它想做一个门户,把所有的用户都包含在平台上,当时为了维护这个封闭花园它前前后后花了 600 亿美金,最终还是无奈破产。


另外一个演进的例子是  Pinterest。Pinterest 一开始也是做电商导购系统,然后失败了。在这个过程当中发现大家对他们的图片分享非常喜欢,于是他们把其他功能扔掉了,就做图片的分享。他们简化为非常简单的工具:菜谱的图片分享。后来经过几年演化之后,才又做回了导购系统。


很多人工智能产品的公司在发展过程中会有 场景跃迁 。比如出门问问,开始做出行 App ,后来做了手表、车载导航;云知声的发展,最早的业务是搜音乐,后来做了语音云,为很多行业的产品方案,下一步的场景包括智能家居。文因互联一开始做的是金融搜索,现在我们在做金融自动化报告的机器人,未来可能会演化到智能资管或者智能投顾。


做智能金融、法律、医疗产品演化的一般的中间节点是什么?这个问题我也没有答案。需要大家去探索。

产品是团队的映射  ▼

康威定律讲的是产品演化更底层的问题:产品的结构映射了产生它的团队的结构,可演化的产品需要可演化的团队。







请到「今天看啥」查看全文


推荐文章
大数据分析和人工智能  ·  人到中年才懂:能上班是福气
3 天前
软件定义世界(SDX)  ·  工业大模型的演进及落地方向
2 天前
亿邦动力  ·  这家泰国餐厅,点菜只能靠猜!
7 年前
摄影笔记  ·  自学摄影看什么书
7 年前
搬砖怪谈  ·  【短篇惊悚】屋门口的跟踪狂
7 年前
历史震惊你  ·  老照片|高考恢复后的瞬间
7 年前