专栏名称: Java专栏
一个Java、Python、数据库、中间件、业内资讯、面试、学习资源等干货的知识分享社区。
目录
相关文章推荐
51好读  ›  专栏  ›  Java专栏

讲一下TCP/IP的二三事

Java专栏  · 公众号  ·  · 2020-11-16 12:20

正文

点击上方 Java专栏 ”, 选择“置顶或者星标”


第一时间阅读精彩文章!


点击这段文字获取: 5个可以写到简历的项目实战视频教程(含源码)


先亮出这篇文章的思维导图

TCP 作为传输层的协议,是一个软件工程师素养的体现,也是面试中经常被问到的知识点。在此,我将 TCP 核心的一些问题梳理了一下,希望能帮到各位。

001. 能不能说一说 TCP 和 UDP 的区别?

首先概括一下基本的区别:

TCP是一个面向连接的、可靠的、基于字节流的传输层协议。

UDP是一个面向无连接的传输层协议。 (就这么简单,其它TCP的特性也就没有了)。

具体来分析,和 UDP 相比, TCP 有三大核心特性:

  1. 面向连接 。所谓的连接,指的是客户端和服务器的连接,在双方互相通信之前,TCP 需要三次握手建立连接,而 UDP 没有相应建立连接的过程。

  2. 可靠性 。TCP 花了非常多的功夫保证连接的可靠,这个可靠性体现在哪些方面呢?一个是有状态,另一个是可控制。

TCP 会精准记录哪些数据发送了,哪些数据被对方接收了,哪些没有被接收到,而且保证数据包按序到达,不允许半点差错。这是 有状态

当意识到丢包了或者网络环境不佳,TCP 会根据具体情况调整自己的行为,控制自己的发送速度或者重发。这是 可控制

相应的,UDP 就是 无状态 , 不可控 的。

  1. 面向字节流 。UDP 的数据传输是基于数据报的,这是因为仅仅只是继承了 IP 层的特性,而 TCP 为了维护状态,将一个个 IP 包变成了字节流。

002: 说说 TCP 三次握手的过程?为什么是三次而不是两次、四次?

恋爱模拟

以谈恋爱为例,两个人能够在一起最重要的事情是首先确认各自 被爱 的能力。接下来我们以此来模拟三次握手的过程。

第一次:

男: 我爱你。

女方收到。

由此证明男方拥有 的能力。

第二次:

女: 我收到了你的爱,我也爱你。

男方收到。

OK,现在的情况说明,女方拥有 被爱 的能力。

第三次:

男: 我收到了你的爱。

女方收到。

现在能够保证男方具备 被爱 的能力。

由此完整地确认了双方 被爱 的能力,两人开始一段甜蜜的爱情。

真实握手

当然刚刚那段属于扯淡,不代表本人价值观,目的是让大家理解整个握手过程的意义,因为两个过程非常相似。对应到 TCP 的三次握手,也是需要确认双方的两样能力: 发送的能力 接收的能力 。于是便会有下面的三次握手的过程:

从最开始双方都处于 CLOSED 状态。然后服务端开始监听某个端口,进入了 LISTEN 状态。

然后客户端主动发起连接,发送 SYN , 自己变成了 SYN-SENT 状态。

服务端接收到,返回 SYN ACK (对应客户端发来的SYN),自己变成了 SYN-REVD

之后客户端再发送 ACK 给服务端,自己变成了 ESTABLISHED 状态;服务端收到 ACK 之后,也变成了 ESTABLISHED 状态。

另外需要提醒你注意的是,从图中可以看出,SYN 是需要消耗一个序列号的,下次发送对应的 ACK 序列号要加1,为什么呢?只需要记住一个规则:

凡是需要对端确认的,一定消耗TCP报文的序列号。

SYN 需要对端的确认, 而 ACK 并不需要,因此 SYN 消耗一个序列号而 ACK 不需要。

为什么不是两次?

根本原因: 无法确认客户端的接收能力。

分析如下:

如果是两次,你现在发了 SYN 报文想握手,但是这个包 滞留 在了当前的网络中迟迟没有到达,TCP 以为这是丢了包,于是重传,两次握手建立好了连接。

看似没有问题,但是连接关闭后,如果这个 滞留 在网路中的包到达了服务端呢?这时候由于是两次握手,服务端只要接收到然后发送相应的数据包,就默认 建立连接 ,但是现在客户端已经断开了。

看到问题的吧,这就带来了连接资源的浪费。

为什么不是四次?

三次握手的目的是确认双方 发送 接收 的能力,那四次握手可以嘛?

当然可以,100 次都可以。但为了解决问题,三次就足够了,再多用处就不大了。

三次握手过程中可以携带数据么?

第三次握手的时候,可以携带。前两次握手不能携带数据。

如果前两次握手能够携带数据,那么一旦有人想攻击服务器,那么他只需要在第一次握手中的 SYN 报文中放大量数据,那么服务器势必会消耗更多的 时间 内存空间 去处理这些数据,增大了服务器被攻击的风险。

第三次握手的时候,客户端已经处于 ESTABLISHED 状态,并且已经能够确认服务器的接收、发送能力正常,这个时候相对安全了,可以携带数据。

同时打开会怎样?

如果双方同时发 SYN 报文,状态变化会是怎样的呢?

这是一个可能会发生的情况。

状态变迁如下:

在发送方给接收方发 SYN 报文的同时,接收方也给发送方发 SYN 报文,两个人刚上了!

发完 SYN ,两者的状态都变为 SYN-SENT

在各自收到对方的 SYN 后,两者状态都变为 SYN-REVD

接着会回复对应的 ACK + SYN ,这个报文在对方接收之后,两者状态一起变为 ESTABLISHED

这就是同时打开情况下的状态变迁。

003: 说说 TCP 四次挥手的过程

过程拆解

刚开始双方处于 ESTABLISHED 状态。

客户端要断开了,向服务器发送 FIN 报文,在 TCP 报文中的位置如下图:

发送后客户端变成了 FIN-WAIT-1 状态。注意, 这时候客户端同时也变成了 half-close(半关闭) 状态,即无法向服务端发送报文,只能接收。

服务端接收后向客户端确认,变成了 CLOSED-WAIT 状态。

客户端接收到了服务端的确认,变成了 FIN-WAIT2 状态。

随后,服务端向客户端发送 FIN ,自己进入 LAST-ACK 状态,

客户端收到服务端发来的 FIN 后,自己变成了 TIME-WAIT 状态,然后发送 ACK 给服务端。

注意了,这个时候,客户端需要等待足够长的时间,具体来说,是 2 个 MSL ( Maximum Segment Lifetime,报文最大生存时间 ), 在这段时间内如果客户端没有收到服务端的重发请求,那么表示 ACK 成功到达,挥手结束,否则客户端重发 ACK。

等待2MSL的意义

如果不等待会怎样?

如果不等待,客户端直接跑路,当服务端还有很多数据包要给客户端发,且还在路上的时候,若客户端的端口此时刚好被新的应用占用,那么就接收到了无用数据包,造成数据包混乱。所以,最保险的做法是等服务器发来的数据包都死翘翘再启动新的应用。

那,照这样说一个 MSL 不就不够了吗,为什么要等待 2 MSL?

  • 1 个 MSL 确保四次挥手中主动关闭方最后的 ACK 报文最终能达到对端
  • 1 个 MSL 确保对端没有收到 ACK 重传的 FIN 报文可以到达

这就是等待 2MSL 的意义。

为什么是四次挥手而不是三次?

因为服务端在接收到 FIN , 往往不会立即返回 FIN , 必须等到服务端所有的报文都发送完毕了,才能发 FIN 。因此先发一个 ACK 表示已经收到客户端的 FIN ,延迟一段时间才发 FIN 。这就造成了四次挥手。

如果是三次挥手会有什么问题?

等于说服务端将 ACK FIN 的发送合并为一次挥手,这个时候长时间的延迟可能会导致客户端误以为 FIN 没有到达客户端,从而让客户端不断的重发 FIN

同时关闭会怎样?

如果客户端和服务端同时发送 FIN ,状态会如何变化?如图所示:

004: 说说半连接队列和 SYN Flood 攻击的关系

三次握手前,服务端的状态从 CLOSED 变为 LISTEN , 同时在内部创建了两个队列: 半连接队列 全连接队列 ,即 SYN队列 ACCEPT队列

半连接队列

当客户端发送 SYN 到服务端,服务端收到以后回复 ACK SYN ,状态由 LISTEN 变为 SYN_RCVD ,此时这个连接就被推入了 SYN队列 ,也就是 半连接队列

全连接队列

当客户端返回 ACK , 服务端接收后,三次握手完成。这个时候连接等待被具体的应用取走,在被取走之前,它会被推入另外一个 TCP 维护的队列,也就是 全连接队列(Accept Queue)

SYN Flood 攻击原理

SYN Flood 属于典型的 DoS/DDoS 攻击。其攻击的原理很简单,就是用客户端在短时间内伪造大量不存在的 IP 地址,并向服务端疯狂发送 SYN 。对于服务端而言,会产生两个危险的后果:

  1. 处理大量的 SYN 包并返回对应 ACK , 势必有大量连接处于 SYN_RCVD 状态,从而占满整个 半连接队列 ,无法处理正常的请求。

  2. 由于是不存在的 IP,服务端长时间收不到客户端的 ACK ,会导致服务端不断重发数据,直到耗尽服务端的资源。

如何应对 SYN Flood 攻击?

  1. 增加 SYN 连接,也就是增加半连接队列的容量。
  2. 减少 SYN + ACK 重试次数,避免大量的超时重发。
  3. 利用 SYN Cookie 技术,在服务端接收到 SYN 后不立即分配连接资源,而是根据这个 SYN 计算出一个Cookie,连同第二次握手回复给客户端,在客户端回复 ACK 的时候带上这个 Cookie 值,服务端验证 Cookie 合法之后才分配连接资源。

005: 介绍一下 TCP 报文头部的字段

报文头部结构如下(单位为字节):

请大家牢记这张图!

源端口、目标端口

如何标识唯一标识一个连接?答案是 TCP 连接的 四元组 ——源 IP、源端口、目标 IP 和目标端口。

那 TCP 报文怎么没有源 IP 和目标 IP 呢?这是因为在 IP 层就已经处理了 IP 。TCP 只需要记录两者的端口即可。

序列号

Sequence number , 指的是本报文段第一个字节的序列号。

从图中可以看出,序列号是一个长为 4 个字节,也就是 32 位的无符号整数,表示范围为 0 ~ 2^32 - 1。如果到达最大值了后就循环到0。

序列号在 TCP 通信的过程中有两个作用:

  1. 在 SYN 报文中交换彼此的初始序列号。
  2. 保证数据包按正确的顺序组装。

ISN

Initial Sequence Number(初始序列号) ,在三次握手的过程当中,双方会用过 SYN 报文来交换彼此的 ISN

ISN 并不是一个固定的值,而是每 4 ms 加一,溢出则回到 0,这个算法使得猜测 ISN 变得很困难。那为什么要这么做?

如果 ISN 被攻击者预测到,要知道源 IP 和源端口号都是很容易伪造的,当攻击者猜测 ISN 之后,直接伪造一个 RST 后,就可以强制连接关闭的,这是非常危险的。

而动态增长的 ISN 大大提高了猜测 ISN 的难度。

确认号

ACK(Acknowledgment number) 。用来告知对方下一个期望接收的序列号, 小于ACK 的所有字节已经全部收到。

标记位

常见的标记位有 SYN , ACK , FIN , RST , PSH

SYN 和 ACK 已经在上文说过,后三个解释如下: FIN :即 Finish,表示发送方准备断开连接。

RST :即 Reset,用来强制断开连接。

PSH :即 Push, 告知对方这些数据包收到后应该马上交给上层的应用,不能缓存。

窗口大小

占用两个字节,也就是 16 位,但实际上是不够用的。因此 TCP 引入了窗口缩放的选项,作为窗口缩放的比例因子,这个比例因子的范围在 0 ~ 14,比例因子可以将窗口的值扩大为原来的 2 ^ n 次方。

校验和

占用两个字节,防止传输过程中数据包有损坏,如果遇到校验和有差错的报文,TCP 直接丢弃之,等待重传。

可选项

可选项的格式如下:

常用的可选项有以下几个:

  • TimeStamp: TCP 时间戳,后面详细介绍。
  • MSS: 指的是 TCP 允许的从对方接收的最大报文段。
  • SACK: 选择确认选项。
  • Window Scale:窗口缩放选项。

006: 说说 TCP 快速打开的原理(TFO)

第一节讲了 TCP 三次握手,可能有人会说,每次都三次握手好麻烦呀!能不能优化一点?

可以啊。今天来说说这个优化后的 TCP 握手流程,也就是 TCP 快速打开(TCP Fast Open, 即TFO)的原理。

优化的过程是这样的,还记得我们说 SYN Flood 攻击时提到的 SYN Cookie 吗?这个 Cookie 可不是浏览器的 Cookie , 用它同样可以实现 TFO。

TFO 流程

首轮三次握手

首先客户端发送 SYN 给服务端,服务端接收到。

注意哦!现在服务端不是立刻回复 SYN + ACK,而是通过计算得到一个 SYN Cookie , 将这个 Cookie 放到 TCP 报文的 Fast Open 选项中,然后才给客户端返回。

客户端拿到这个 Cookie 的值缓存下来。后面正常完成三次握手。

首轮三次握手就是这样的流程。而后面的三次握手就不一样啦!

后面的三次握手

在后面的三次握手中,客户端会将之前缓存的 Cookie SYN HTTP请求 (是的,你没看错)发送给服务端,服务端验证了 Cookie 的合法性,如果不合法直接丢弃;如果是合法的,那么就正常返回 SYN + ACK

重点来了,现在服务端能向客户端发 HTTP 响应了!这是最显著的改变,三次握手还没建立,仅仅验证了 Cookie 的合法性,就可以返回 HTTP 响应了。

当然,客户端的 ACK 还得正常传过来,不然怎么叫三次握手嘛。

流程如下:

注意: 客户端最后握手的 ACK 不一定要等到服务端的 HTTP 响应到达才发送,两个过程没有任何关系。

TFO 的优势

TFO 的优势并不在与首轮三次握手,而在于后面的握手,在拿到客户端的 Cookie 并验证通过以后,可以直接返回 HTTP 响应,充分利用了 1 个RTT (Round-Trip Time,往返时延)的时间 提前进行数据传输 ,积累起来还是一个比较大的优势。







请到「今天看啥」查看全文