菜鸟作为国内物流行业的领军企业,业务线覆盖海内外。其业务特征为劳动力密集,合作企业众多,包裹投递链路多样化且节点众多,全链路协同。
一、物流业务概要
一个物品从工厂生产出来后,到被运送到买家手里是一个较长的链路,工厂运送到商家,然后通过运输运送到分拨,再从分拨运输到下一个节点的分拨。通常从一个城市到另外一个城市是由两个分拨来负责的,一个城市负责收货(集包),一个城市来负责发送(传账)。分拨之后,下放到站点和门店,这时候再由快递员送到各位手里,或者菜鸟驿站,这就是一条完整的链路。在这个过程中,物流企业要做很多事情。
首先是设计服务产品。比如说,从北京到杭州这条物流线路叫做一个物流的服务产品;
-
首先是设计服务产品。比如说,从北京到杭州这条物流线路叫做一个物流的服务产品;
-
服务产品出来以后,要做出相应的报价,从 A 点到 B 点需要多少钱?这个产品定价出来之后,客户可以去订购;
-
接下来就要做相关的订单管理;
-
路线的规划是一个很有考究的东西,比如从北京到杭州,可以从北京到济南,然后再到杭州。它决定了物流的效率和物流的成本;
-
揽收送货。比如在 A 点有货,需要送到 B 点。首先 A 点会把货给到我,做合规性检查后,把货返还给 A,再进行派送;
-
事件管理。在整个过程中会有很多问题出现,大家比较熟悉的包裹丢失的情况,这就是一种事件。那么就对应着一系列的事件管理,比如客诉、实操管理;
-
运力管理。物流是一个从 A 点到 B 点的全链路的运货物流过程,它每一个节点上面都需要有人和车还有其他相关的物资进行保障的;
-
财务报表。所有的这一切,都是为了盈利的。
上图是一个物流企业的业务领域分析图,通常称它为战略地图。数据产品要协助的业务目标一般分成 8 大块,包含财务、客户层面,过程管理和资源管理等 4 个方面:
-
财务层面,包含 2 个大的目标。生产力目标,分析物流公司整个操作环节的成本结构,然后提高资产利用率。营收增长率目标,增加收入机会,提高客户价值;
-
客户层面。我们向客户售卖的是什么样的物流服务产品?目标客户有什么样的价值主张?我们和客户之间的关系如何维系?这些东西,都是可以通过数据来量化的;
-
过程管理。包含运营管理和销售管理,投递取出、维护实操。对于找什么样的客户来使用产品,以及怎么样能获得更多的客户,有一系列的销售管理;
-
资源管理。最底层是支撑上面这一切的基础。分为人力资源管理、实操的物料管理,信息资源。整个企业文化的管理,都要尽力把它数字化起来,才能让物流企业拥有比较透明的管理权。
二、配送数据平台 & 运营平台面临的挑战
下面重点讲一下配送全链路业务,是指从商家仓出来一直到用户手上的这段派送履约链路,它包含 4 个主要的实操流程,分别是
分拨实操、运输实操、站点实操和快递员实操
。把 4 种实操管理放到三个系统里面,这三个系统分别是
分拨管理、运输管理、末端站点实操管理
。
用户一般有体感是在末端,也就是说去柜子里面取包裹这个环节。以上这些是整个数据平台或者数据中台在物流领域的数据来源的基础。
数据平台和运营平台,面临的最大挑战是什么
?干了多少活,花了多少钱,用了多少人?就三个基础问题,看起来好像很简单。但是这三个基础问题对应到物流这个场景下,它所面临的问题是非常复杂的。一般来说对应三个具体的运营动作,分别是运营管理、考核管理和经营管理。
这些问题在数据层面可以进一步细化,首先是包裹引擎,包裹引擎会针对到每一秒钟处理的包裹数量,下一步就是预测需要多少车,以及未来可能会发多少货。进一步推演就是全链路仿真系统。
全链路仿真系统是什么?
首先在物流工厂里面,特别是在小促或者大促期间,在供应链那一侧会有大量的数据推送过来,我们大概能预测到在某一个时间点,某一个环节大概要发多少货。我们把这个数据推到一个模仿物流的仿真系统里,在这种仿真系统里做计算,最终达到优化全链路和整个快递网络的效果。优化结果会产出一个决策系统,这个决策系统目前仍然在建设中。
那么整个业务产品是怎么实现的?
-
人工运营
。首先是有基层的实操人员,分拨经理、调度主管和站长,也就是经常看到的菜鸟驿站或者快递网点,他们都是在这一层进行管理的。
-
物流链路
,传统的物流管理方式,很大部分仍然需要有中层人员来进行领导,这些中层人员他们会做很多运营的事情。但不是针对全网,比如说运输管运输,分拨管分拨。这是传统物流的管理方式,这三个链路和三个管理是分开的,没有办法把他们聚合到一起。而数据和技术的力量,可以让这些管理人员能在同一个数据平台或数据中台里看到所有数据,给他们提供一个全链路的管理和协同工具。技术上要做的就是,把这三个东西变成一张物流网络,从而实现人工管理。先所有数据收集,然后在数据里做进一步的分析优化,然后做进一步的预测。
-
数字化运营
,是指从实操网上的全链路的数据统合,然后在此基础上做数据运营。