正文
Java的Object是所有其他类的父类,从继承的层次来看它就是最顶层根,所以它也是唯一一个没有父类的类。它包含了对象常用的一些方法,比如getClass
、hashCode
、equals
、clone
、toString
、notify
、wait
等常用方法。所以其他类继承了Object后就可以不用重复实现这些方法。这些方法大多数是native方法,下面具体分析。
主要的代码如下:
public class Object {
private static native void registerNatives();
static {
registerNatives();
}
public final native Class getClass();
public native int hashCode();
public boolean equals(Object obj) {
return (this == obj);
}
protected native Object clone() throws CloneNotSupportedException;
public String toString() {
return getClass().getName() + "@" + Integer.toHexString(hashCode());
}
public final native void notify();
public final native void notifyAll();
public final native void wait(long timeout) throws InterruptedException;
public final void wait(long timeout, int nanos) throws InterruptedException {
if (timeout < 0) {
throw new IllegalArgumentException("timeout value is negative");
}
if (nanos < 0 || nanos > 999999) {
throw new IllegalArgumentException("nanosecond timeout value out of range");
}
if (nanos > 0) {
timeout++;
}
wait(timeout);
}
public final void wait() throws InterruptedException {
wait(0);
}
protected void finalize() throws Throwable {}
}
registerNatives方法
由于registerNatives方法被static块修饰,所以在加载Object类时就会执行该方法,对应的本地方法为Java_java_lang_Object_registerNatives
,如下,
JNIEXPORT void JNICALL
Java_java_lang_Object_registerNatives(JNIEnv *env, jclass cls)
{
(*env)->RegisterNatives(env, cls,
methods, sizeof(methods)/sizeof(methods[0]));
}
可以看到它间接调用了JNINativeInterface_
结构体的方法,简单可以看成是这样:它干的事大概就是将Java层的方法名和本地函数对应起来,方便执行引擎在执行字节码时根据这些对应关系表来调用C/C++函数,如下面,将这些方法进行注册,执行引擎执行到hashCode
方法时就可以通过关系表来查找到JVM的JVM_IHashCode
函数,其中()I
还可以得知Java层上的类型应该转为int类型。这个映射其实就可以看成将字符串映射到函数指针。
static JNINativeMethod methods[] = {
{"hashCode", "()I", (void *)&JVM_IHashCode},
{"wait", "(J)V", (void *)&JVM_MonitorWait},
{"notify", "()V", (void *)&JVM_MonitorNotify},
{"notifyAll", "()V",(void *)&JVM_MonitorNotifyAll},
{"clone","()Ljava/lang/Object;", (void *)&JVM_Clone},
};
getClass方法
getClass方法也是个本地方法,对应的本地方法为Java_java_lang_Object_getClass
,如下:
JNIEXPORT jclass JNICALL
Java_java_lang_Object_getClass(JNIEnv *env, jobject this)
{
if (this == NULL) {
JNU_ThrowNullPointerException(env, NULL);
return 0;
} else {
return (*env)->GetObjectClass(env, this);
}
}
所以这里主要就是看GetObjectClass
函数了,Java层的Class在C++层与之对应的则是klassOop
,所以关于类的元数据和方法信息可以通过它获得。
JNI_ENTRY(jclass, jni_GetObjectClass(JNIEnv *env, jobject obj))
JNIWrapper("GetObjectClass");
DTRACE_PROBE2(hotspot_jni, GetObjectClass__entry, env, obj);
klassOop k = JNIHandles::resolve_non_null(obj)->klass();
jclass ret =
(jclass) JNIHandles::make_local(env, Klass::cast(k)->java_mirror());
DTRACE_PROBE1(hotspot_jni, GetObjectClass__return, ret);
return ret;
JNI_END
hashCode方法
由前面registerNatives方法将几个本地方法注册可知,hashCode方法对应的函数为JVM_IHashCode
,即
JVM_ENTRY(jint, JVM_IHashCode(JNIEnv* env, jobject handle))
JVMWrapper("JVM_IHashCode");
// as implemented in the classic virtual machine; return 0 if object is NULL
return handle == NULL ? 0 : ObjectSynchronizer::FastHashCode (THREAD, JNIHandles::resolve_non_null(handle)) ;
JVM_END
对于hashcode生成的逻辑由synchronizer.cpp
的get_next_hash
函数决定,实现比较复杂,根据hashcode的不同值有不同的生成策略,最后使用一个hash掩码处理。
static inline intptr_t get_next_hash(Thread * Self, oop obj) {
intptr_t value = 0 ;
if (hashCode == 0) {
value = os::random() ;
} else
if (hashCode == 1) {
intptr_t addrBits = intptr_t(obj) >> 3 ;
value = addrBits ^ (addrBits >> 5) ^ GVars.stwRandom ;
} else
if (hashCode == 2) {
value = 1 ; // for sensitivity testing
} else
if (hashCode == 3) {
value = ++GVars.hcSequence ;
} else
if (hashCode == 4) {
value = intptr_t(obj) ;
} else {
unsigned t = Self->_hashStateX ;
t ^= (t << 11) ;
Self->_hashStateX = Self->_hashStateY ;
Self->_hashStateY = Self->_hashStateZ ;
Self->_hashStateZ = Self->_hashStateW ;
unsigned v = Self->_hashStateW ;
v = (v ^ (v >> 19)) ^ (t ^ (t >> 8)) ;
Self->_hashStateW = v ;
value = v ;
}
value &= markOopDesc::hash_mask;
if (value == 0) value = 0xBAD ;
assert (value != markOopDesc::no_hash, "invariant") ;
TEVENT (hashCode: GENERATE) ;
return value;
}
equals方法
这是一个非本地方法,判断逻辑也十分简单,直接==比较。
clone方法
由本地方法表知道clone方法对应的本地函数为JVM_Clone
,clone方法主要实现对象的克隆功能,根据该对象生成一个相同的新对象(我们常见的类的对象的属性如果是原始类型则会克隆值,但如果是对象则会克隆对象的地址)。Java的类要实现克隆则需要实现Cloneable接口,if (!klass->is_cloneable())
这里会校验是否有实现该接口。然后判断是否是数组分两种情况分配内存空间,新对象为new_obj,接着对new_obj进行copy及C++层数据结构的设置。最后再转成jobject类型方便转成Java层的Object类型。
JVM_ENTRY(jobject, JVM_Clone(JNIEnv* env, jobject handle))
JVMWrapper("JVM_Clone");
Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
const KlassHandle klass (THREAD, obj->klass());
JvmtiVMObjectAllocEventCollector oam;
if (!klass->is_cloneable()) {
ResourceMark rm(THREAD);
THROW_MSG_0(vmSymbols::java_lang_CloneNotSupportedException(), klass->external_name());
}
const int size = obj->size();
oop new_obj = NULL;
if (obj->is_javaArray()) {
const int length = ((arrayOop)obj())->length();
new_obj = CollectedHeap::array_allocate(klass, size, length, CHECK_NULL);
} else {
new_obj = CollectedHeap::obj_allocate(klass, size, CHECK_NULL);
}
Copy::conjoint_jlongs_atomic((jlong*)obj(), (jlong*)new_obj,
(size_t)align_object_size(size) / HeapWordsPerLong);
new_obj->init_mark();
BarrierSet* bs = Universe::heap()->barrier_set();
assert(bs->has_write_region_opt(), "Barrier set does not have write_region");
bs->write_region(MemRegion((HeapWord*)new_obj, size));
if (klass->has_finalizer()) {
assert(obj->is_instance(), "should be instanceOop");
new_obj = instanceKlass::register_finalizer(instanceOop(new_obj), CHECK_NULL);
}
return JNIHandles::make_local(env, oop(new_obj));
JVM_END
toString方法
逻辑是获取class名称加上@再加上十六进制的hashCode。
notify方法
此方法用来唤醒线程,final修饰说明不可重写。与之对应的本地方法为JVM_MonitorNotify
,ObjectSynchronizer::notify
最终会调用ObjectMonitor::notify(TRAPS)
,这个过程是ObjectSynchronizer会尝试当前线程获取free ObjectMonitor对象,不成功则尝试从全局中获取。
JVM_ENTRY(void, JVM_MonitorNotify(JNIEnv* env, jobject handle))
JVMWrapper("JVM_MonitorNotify");
Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
assert(obj->is_instance() || obj->is_array(), "JVM_MonitorNotify must apply to an object");
ObjectSynchronizer::notify(obj, CHECK);
JVM_END
ObjectMonitor对象包含一个_WaitSet
队列对象,此对象保存着所有处于wait状态的线程,用ObjectWaiter对象表示。notify要做的事是先获取_WaitSet
队列锁,再取出_WaitSet
队列中第一个ObjectWaiter对象,再根据不同策略处理该对象,比如把它加入到_EntryList
队列中。然后再释放_WaitSet
队列锁。它并没有释放synchronized对应的锁,所以锁只能等到synchronized同步块结束时才释放。
void ObjectMonitor::notify(TRAPS) {
CHECK_OWNER();
if (_WaitSet == NULL) {
TEVENT (Empty-Notify) ;
return ;
}
DTRACE_MONITOR_PROBE(notify, this, object(), THREAD);
int Policy = Knob_MoveNotifyee ;
Thread::SpinAcquire (&_WaitSetLock, "WaitSet - notify") ;
ObjectWaiter * iterator = DequeueWaiter() ;
if (iterator != NULL) {
TEVENT (Notify1 - Transfer) ;
guarantee (iterator->TState == ObjectWaiter::TS_WAIT, "invariant") ;
guarantee (iterator->_notified == 0, "invariant") ;
if (Policy != 4) {
iterator->TState = ObjectWaiter::TS_ENTER ;
}
iterator->_notified = 1 ;
ObjectWaiter * List = _EntryList ;
if (List != NULL) {
assert (List->_prev == NULL, "invariant") ;
assert (List->TState == ObjectWaiter::TS_ENTER, "invariant") ;
assert (List != iterator, "invariant") ;
}
if (Policy == 0) { // prepend to EntryList
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
List->_prev = iterator ;
iterator->_next = List ;
iterator->_prev = NULL ;
_EntryList = iterator ;
}
} else
if (Policy == 1) { // append to EntryList
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
// CONSIDER: finding the tail currently requires a linear-time walk of
// the EntryList. We can make tail access constant-time by converting to
// a CDLL instead of using our current DLL.
ObjectWaiter * Tail ;
for (Tail = List ; Tail->_next != NULL ; Tail = Tail->_next) ;
assert (Tail != NULL && Tail->_next == NULL, "invariant") ;
Tail->_next = iterator ;
iterator->_prev = Tail ;
iterator->_next = NULL ;
}
} else
if (Policy == 2) { // prepend to cxq
// prepend to cxq
if (List == NULL) {
iterator->_next = iterator->_prev = NULL ;
_EntryList = iterator ;
} else {
iterator->TState = ObjectWaiter::TS_CXQ ;
for (;;) {
ObjectWaiter * Front = _cxq ;
iterator->_next = Front ;
if (Atomic::cmpxchg_ptr (iterator, &_cxq, Front) == Front) {
break ;
}
}
}
} else
if (Policy == 3) { // append to cxq
iterator->TState = ObjectWaiter::TS_CXQ ;
for (;;) {
ObjectWaiter * Tail ;
Tail = _cxq ;
if (Tail == NULL) {
iterator->_next = NULL ;
if (Atomic::cmpxchg_ptr (iterator, &_cxq, NULL) == NULL) {
break ;
}
} else {
while (Tail->_next != NULL) Tail = Tail->_next ;
Tail->_next = iterator ;
iterator->_prev = Tail ;
iterator->_next = NULL ;
break ;
}
}
} else {
ParkEvent * ev = iterator->_event ;
iterator->TState = ObjectWaiter::TS_RUN ;
OrderAccess::fence() ;
ev->unpark() ;
}
if (Policy < 4) {
iterator->wait_reenter_begin(this);
}
// _WaitSetLock protects the wait queue, not the EntryList. We could
// move the add-to-EntryList operation, above, outside the critical section
// protected by _WaitSetLock. In practice that's not useful. With the
// exception of wait() timeouts and interrupts the monitor owner
// is the only thread that grabs _WaitSetLock. There's almost no contention
// on _WaitSetLock so it's not profitable to reduce the length of the
// critical section.
}
Thread::SpinRelease (&_WaitSetLock) ;
if (iterator != NULL && ObjectMonitor::_sync_Notifications != NULL) {
ObjectMonitor::_sync_Notifications->inc() ;
}
}
notifyAll方法
与notify方法类似,只是在取_WaitSet
队列时不是取第一个而是取所有。
wait方法
wait方法是让线程等待,它对应的本地方法是JVM_MonitorWait
,间接调用了ObjectSynchronizer::wait
,与notify对应,它也是对应调用ObjectMonitor对象的wait方法。该方法较长,这里不贴出来了,大概就是创建一个ObjectWaiter对象,接着获取_WaitSet
队列锁将ObjectWaiter对象添加到该队列中,再释放队列锁。另外,它还会释放synchronized对应的锁,所以锁没有等到synchronized同步块结束时才释放。
JVM_ENTRY(void, JVM_MonitorWait(JNIEnv* env, jobject handle, jlong ms))
JVMWrapper("JVM_MonitorWait");
Handle obj(THREAD, JNIHandles::resolve_non_null(handle));
assert(obj->is_instance() || obj->is_array(), "JVM_MonitorWait must apply to an object");
JavaThreadInObjectWaitState jtiows(thread, ms != 0);
if (JvmtiExport::should_post_monitor_wait()) {
JvmtiExport::post_monitor_wait((JavaThread *)THREAD, (oop)obj(), ms);
}
ObjectSynchronizer::wait(obj, ms, CHECK);
JVM_END
finalize方法
这个方法用于当对象被回收时调用,这个由JVM支持,Object的finalize方法默认是什么都没有做,如果子类需要在对象被回收时执行一些逻辑处理,则可以重写finalize方法。
以下是广告和相关阅读
========广告时间========
鄙人的新书《Tomcat内核设计剖析》已经在京东销售了,有需要的朋友可以到https://item.jd.com/12185360.html 进行预定。感谢各位朋友。
=========================
相关阅读:
谈谈Java基础数据类型
JDK源码角度看并发锁的优化
从JDK源码角度看线程的阻塞和唤醒
从JDK源码角度看并发竞争的超时
从 JDK 源码角度看 java 并发线程的中断
从 JDK 源码角度看 Java 并发的公平性
从 JDK 源码角度看 Boolean