专栏名称: 芋道源码
纯 Java 源码分享公众号,目前有「Dubbo」「SpringCloud」「Java 并发」「RocketMQ」「Sharding-JDBC」「MyCAT」「Elastic-Job」「SkyWalking」「Spring」等等
目录
相关文章推荐
芋道源码  ·  SpringBoot 将 jar 包和 ... ·  14 小时前  
Java编程精选  ·  减少 try catch ,可以这样干! ·  2 天前  
芋道源码  ·  美团一面:为什么 MySQL 不推荐使用 ... ·  2 天前  
51好读  ›  专栏  ›  芋道源码

美团一面:为什么 MySQL 不推荐使用 join?

芋道源码  · 公众号  · Java  · 2025-01-06 09:29

正文

👉 这是一个或许对你有用的社群

🐱 一对一交流/面试小册/简历优化/求职解惑,欢迎加入芋道快速开发平台知识星球。下面是星球提供的部分资料: 

👉这是一个或许对你有用的开源项目

国产 Star 破 10w+ 的开源项目,前端包括管理后台 + 微信小程序,后端支持单体和微服务架构。

功能涵盖 RBAC 权限、SaaS 多租户、数据权限、商城、支付、工作流、大屏报表、微信公众号、CRM 等等功能:

  • Boot 仓库:https://gitee.com/zhijiantianya/ruoyi-vue-pro
  • Cloud 仓库:https://gitee.com/zhijiantianya/yudao-cloud
  • 视频教程:https://doc.iocoder.cn
【国内首批】支持 JDK 21 + SpringBoot 3.2.2、JDK 8 + Spring Boot 2.7.18 双版本 

来源:cnblogs.com/liboware
/p/12740901.html


1.对于mysql,不推荐使用子查询和join是因为本身join的效率就是硬伤,一旦数据量很大效率就很难保证,强烈推荐分别根据索引单表取数据,然后在程序里面做join,merge数据。

2.子查询就更别用了,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,这里多了一个创建和销毁临时表的过程。

3.如果是JOIN的话,它是走嵌套查询的。小表驱动大表,且通过索引字段进行关联。如果表记录比较少的话,还是OK的。大的话业务逻辑中可以控制处理。

4.数据库是最底层的,瓶颈往往是数据库。建议数据库只是作为数据store的工具,而不要添加业务上去。

一、应用层关联的优势

让缓存的效率更高。许多应用程序可以方便地缓存单表查询对应的结果对象。如果关联中的某个表发生了变化,那么就无法使用查询缓存了,而拆分后,如果某个表很少改变,那么基于该表的查询就可以重复利用查询缓存结果了。

  • 将查询分解后,执行单个查询可以减少锁的竞争。
  • 在应用层做关联,可以更容易对数据库进行拆分,更容易做到高性能和可扩展。
  • 查询本身效率也可能会有所提升。查询id集的时候,使用IN()代替关联查询,可以让MySQL按照ID顺序进行查询,这可能比随机的关联要更高效。
  • 可以减少冗余记录的查询。在应用层做关联查询,意味着对于某条记录应用只需要查询一次,而在数据库中做关联查询,则可能需
  • 要重复地访问一部分数据。从这点看,这样的重构还可能会减少网络和内存的消艳。
  • 更进一步,这样做相当于在应用中实现了哈希关联,而不是使用MySQL的嵌套循环关联。某些场景哈希关联的效率要高很多。

基于 Spring Boot + MyBatis Plus + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/ruoyi-vue-pro
  • 视频教程:https://doc.iocoder.cn/video/

二、应用层关联的使用场景

  • 当应用能够方便地缓存单个查询的结果的时候
  • 当可以将数据分布到不同的MySQL服务器上的时候
  • 当能够使用IN()的方式代替关联查询的时候
  • 并发场景多,DB查询频繁,需要分库分表

基于 Spring Cloud Alibaba + Gateway + Nacos + RocketMQ + Vue & Element 实现的后台管理系统 + 用户小程序,支持 RBAC 动态权限、多租户、数据权限、工作流、三方登录、支付、短信、商城等功能

  • 项目地址:https://github.com/YunaiV/yudao-cloud
  • 视频教程:https://doc.iocoder.cn/video/

三、不推荐使用join的原因

1.DB承担的业务压力大,能减少负担就减少。当表处于百万级别后,join导致性能下降;

2.分布式的分库分表。这种时候是不建议跨库join的。目前mysql的分布式中间件,跨库join表现不良。

3.修改表的schema,单表查询的修改比较容易,join写的sql语句要修改,不容易发现,成本比较大,当系统比较大时,不好维护。

四、不使用join的解决方案

在业务层,单表查询出数据后,作为条件给下一个单表查询。也就是子查询。会担心子查询出来的结果集太多。mysql对in的数量没有限制,但是mysql限制整条sql语句的大小。

通过调整参数max_allowed_packet ,可以修改一条sql的最大值。建议在业务上做好处理,限制一次查询出来的结果集是能接受的。

五、join查询的优势

关联查询的好处是可以做分页,可以用副表的字段做查询条件,在查询的时候,将副表匹配到的字段作为结果集,用主表去in它。

但是问题来了,如果匹配到的数据量太大就不行了,也会导致返回的分页记录跟实际的不一样,解决的方法可以交给前端,一次性查询,让前端分批显示就可以了,这种解决方案的前提是数据量不太,因为sql本身长度有限。


欢迎加入我的知识星球,全面提升技术能力。

👉 加入方式,长按”或“扫描”下方二维码噢

星球的内容包括:项目实战、面试招聘、源码解析、学习路线。

文章有帮助的话,在看,转发吧。

谢谢支持哟 (*^__^*)