专栏名称: 半导体行业观察
半导体行业第一垂直媒体,30万半导体精英的共同关注!实时、专业、原创,专注观察全球半导体行业最新资讯、技术前沿、发展趋势。欢迎订阅摩尔精英旗下更多公众号:摩尔精英MooreRen、摩尔芯闻MooreNEWS
目录
相关文章推荐
OFweek维科网  ·  小米神秘新品将至?魅族前副总裁爆料! ·  昨天  
OFweek维科网  ·  利润暴跌159%!激光龙头年亏11.84亿 ·  昨天  
OFweek维科网  ·  两大锂电龙头官宣赴港IPO! ·  2 天前  
OFweek维科网  ·  突发!又一电池工厂项目终止! ·  3 天前  
半导体行业联盟  ·  清华大学:DeepSeek从入门到精通(2025) ·  5 天前  
51好读  ›  专栏  ›  半导体行业观察

1nm晶体管能救得了摩尔定律吗?

半导体行业观察  · 公众号  · 半导体  · 2016-10-10 08:30

正文



40 多年来,摩尔定律一直是 IT 界的铁律。


但随着芯片技术的发展,摩尔定律所预言的发展轨迹似乎已逼近终点。

这意味着,固守传统思路的芯片制造商将举步维艰。


最近,美国团队研制出的 1 纳米晶体管对芯片商来说无异于“最后通牒”。

他们将如何自我救赎?

研制出1纳米晶体管的研究员Ali Javey和SujayDesai

最近,美国劳伦斯•伯克利国家实验室(Lawrence Berkeley National Laboratory)的一个研究团队—已经成功研制出栅极(晶体管内的电流由栅极控制)仅长1纳米的晶体管,号称是有史以来最小的晶体管。

这下很多人都不淡定了,媒体纷纷疾呼“摩尔定律没戏唱了”。

众所周知,多年来,计算机产业的发展始终遵循着摩尔定律。摩尔定律认为,半导体电路的晶体管的数量每18-24个月翻一倍。而晶体管的尺寸对计算机技术的提高来说非常重要。晶体管越小,单个芯片上可容纳的晶体管数量就越多;芯片上的晶体管数量越多,处理器的速度越快、效率越高。同样价格的电子产品性能,时隔18-24个月后就会翻倍。但是反过来看,一个IT公司如果今天和18个月前卖掉同样多的、同样的产品,它的营业额就要降一半。

这就是为什么,几十年来芯片制造商一直都在与摩尔定律苦苦斗争——不能做出更小的晶体管,生存就面临威胁。但是现在,这一切可能都要改写。

在长达40多年的时间里,摩尔定律始终是IT界的铁律。然而进入21世纪以来,摩尔定律似乎出现了“放缓”的迹象。

随着芯片技术的进一步发展,摩尔定律逐渐遇到物理法则的限制。业界普遍认为,7纳米是硅晶体管的一道坎,一旦过了这个节点,就会遇到问题。因为一旦硅晶体管的栅极小于7纳米,电子就可以在不同的晶体管之间流动,这种现象被称为量子穿隧效应(Quantum Tunneling),它意味着晶体管可能会在原本应该是关闭的状态下意外打开。

但即使是7纳米以上的晶体管,也依然面临从理论向实际跨越的难题。目前最先进的芯片制程工艺采用的是14纳米晶体管,而采用10 纳米晶体管的处理器——如 英特尔 的Cannonlake处理器——预计到2017年或2018才能推出。


IBM 生产的7纳米测试芯片

这里提供一些参考:一根头发大约有10万纳米那么粗,一个血红细胞的直径为6000纳米,就连一根DNA链也有2.5纳米。

与此同时,对更高端的芯片的需求却在一路飙升。今天,我们生产的数据量正在呈指数级增加,而像机器学习这样的新兴技术,正在对芯片的运算能力提出越来越高的要求。

劳伦斯•伯克利国家实验室无疑是一个了不起的科研成果,因为这意味着,单个芯片上容纳的晶体管数量仍然可以成倍增长,至少在理论上如此。

但是,这项研究还处于初期阶段,目前仅仅是一个概念,要成为现实产品还有很长的路要走。以14纳米晶体管而言,单个芯片上拥有的晶体管数量超过十亿,而劳伦斯•伯克利实验室的团队还没有找到可以大规模生产1纳米晶体管及新型芯片的方法,即使找到了,其造价也是极其昂贵的。


当然,即使仅仅作为概念,该团对的研究成果仍然是重要的——它证明了我们可以利用新材料来生产尺寸更小的晶体管,以进一步提高计算机的功能和效率。

事实上,芯片业界已经接受了晶体管尺寸接近下限的现实,并已经为摩尔定律的终结做了准备。今年早些时候,美国半导体工业协会(Semiconductor Industry Association)——成员包括英特尔、 AMD 和GlobalFoundries——发表了一份报告。这份报告宣称,到2021年,硅晶体管尺寸的缩小将不再是一件经济可行的事情。取而代之的是,芯片将以另一种方式发生变化。

芯片专业化是目前比较靠谱的一种解决方案。传统上,业界对所有芯片都是“一视同仁”,但现在这种观念可能要落伍了。麻省理工学院斯隆管理学院的助理教授Neil Thompson说:“(比如)我们开的车就不尽相同,18轮大卡车、跑车、SUV,这些车设计出来都有专门的目的,现在芯片也开始有这样的分工。”

图形处理器(GPU)就是一个例子。GPU原本专为图形渲染中执行复杂的数学和几何计算而设计的,但现在工程师们发现,GPU也可以用于数据分析等其他领域。

芯片行业开始从超高速的、全能型芯片向更专业化的芯片转变。为此,因特尔收购了视觉芯片创业公司Movidius。与此同时,Nvidia公司正在向全球销售人工智能芯片。


英伟达 CEO 黄仁勋在台北国际电脑展会上展示Tesla P100人工智能专用芯片

更高效的芯片也将有助于在降低能耗的基础上提高计算速度。 微软 和英特尔都在研究可再编程芯片(FPGA),以更高效地运行人工智能算法。日本软银最近收购了英国芯片开发商ARM,以获得该公司先进得令人难以置信的低功耗芯片,该芯片将为正在崛起的物联网硬件提供信息处理能力。

而那些专业化程度不高的处理器可能会改变构造,以提高信息处理能力。例如,芯片将越来越多地使用多层电路,以提高晶体管密度。

回顾:摩尔定律的诞生

在1965年那篇著名的论文发表之前,戈登·摩尔(Gordon Moore) 是位于加州圣何塞的仙童半导体公司的研发总监,他已经预测了家用计算机、电子腕表、自动驾驶汽车以及“个人可移动沟通设备”——手机的诞生,但1965年那篇关于后来被称为“摩尔定律”的预测的论文真正使他名声大噪,这篇论文的核心是关于未来计算机行业发展的时间表,基于对仙童以及其他半导体企业的了解,摩尔预计每年每芯片的晶体管和其他电子元件的数量都将加倍。

摩尔随后在加州圣塔克拉拉创办了 英特尔 ,不过,在上述论文里,他显然高估了芯片更新换代的速度,1975年,他将这个预测修改到更为现实的两年加倍,随后,上世纪70年代和80年代,随着 惠普 个人电脑、Apple II计算机和 IBM PC 等个人消费产品的诞生,行业对芯片的处理能力要求越来越高,体积要求越来越小,摩尔的预言开始成真。


这样的发展是很昂贵的,芯片处理能力的提升意味着将更多的电路集成到芯片中来,从而电子可以从中移动地更快,这也对影印石版术(即将电路等微元件蚀刻到硅表面的技术)的要求越来越高。但是,在半导体行业发展的鼎盛时期,这并不是特别大的问题,企业发展出了一个可谓“自动升级”的循环流程:通过大规模制造和销售少数种类的芯片——主要是处理器和存储芯片——获得大量收入,然后投钱去改进工厂和设备,结果是在提升芯片性能的同时仍能降低价格,因此市场的需求也获得进一步提升。

不过,很快这个市场驱动的模式也无法维持摩尔定律的高速度发展,芯片制造的过程变得过于复杂,常常包含几百个步骤,产品的升级意味着整个供应商和设备商需要在对的时间同时完成升级。“如果你需要40个家供应商而只有39家的产品有所升级,那么所有的事情都得停下来。” 德克萨斯州大学奥斯汀分校研究计算机行业的经济学家肯尼思·弗拉姆( Kenneth Flamm)表示。

为了完成产业上下游的协调,全球半导体行业开始制作了第一次的行业研发规划蓝图,目的是“让所有人都能大致知道他们的进度应该到哪,如果在发展过程中遇到问题也可以警告所有同行,”保罗·加尔吉尼表示。美国半导体行业1991年推出了这项蓝图和战略,时任英特尔技术战略总监的加尔吉尼成为该协会主席,1998年,来自欧洲、日本、台湾和韩国的半导体行业协会也都纷纷加入,该协会变成了国际组织。

摩尔定律即将失效

摩尔定律可以说是整个计算机行业最重要的定律,它其实是一个预言:每两年微处理器的晶体管数量都将加倍——意味着芯片的处理能力也加倍。这种指数级的增长,促使上世纪70年代的大型家庭计算机转化成80、90年代更先进的机器,然后又孕育出了高速度的互联网、智能手机和现在的车联网、智能冰箱和自动调温器等。

这个看起来自然而然的进程,实际很大程度也是人类有意控制的结果,芯片制造商有意按照摩尔定律预测的轨迹发展:软件开发商新的软件产品日益挑战现有设备的芯片处理能力,消费者需要更新为配置更高的设备,设备制造商赶忙去生产可以满足处理要求的下一代芯片。上世纪90年代以来,半导体行业每两年就会发布一份行业研发规划蓝图,协调成百上千家芯片制造商、供应商跟着摩尔定律走,这样的战略,有时也被称之为“更多摩尔”(More Moore),由于这份规划蓝图的存在,整个计算机行业才跟着摩尔定律按部就班地发展。

但现在,这种发展轨迹要告一段落了。由于同样小的空间里集成越来越多的硅电路,产生的热量也越来越大,这种原本两年处理能力加倍的速度已经慢慢下滑。此外,还有更多更大的问题也慢慢显现,如今顶级的芯片制造商的电路精度已经达到14纳米,比大多数病毒还要小。但是,全球半导体行业研发规划蓝图协会主席保罗·加尔吉尼(Paolo Gargini)表示:“到2020年,以最快的发展速度来看,我们的芯片线路可以达到2-3纳米级别,然而在这个级别上只能容纳10个原子,这样的设备,还能叫做一个‘设备’吗?”

恐怕不能。到了那样的级别,电子的行为将受限于量子的不确定性,晶体管将变得不可靠。在这样的前景下,尽管这方面已经有无数研究,但目前人们仍然无法找到可以替代如今的硅片技术的新的材料或技术。

年初发布的行业研究规划蓝图将史无前例地不以摩尔定律为中心,相反,新的战略可能是“超越摩尔”(More than Moore ):与以往首先改善芯片、软件随后跟上的发展趋势不同,以后半导体行业的发展将首先看软件——从手机到超级电脑再到云端的数据中心——然后反过来看要支持软件和应用的运行需要什么处理能力的芯片来支持,由于新的计算设备变得越来越移动化,新的芯片中,可能会有新的一代的传感器、电源管理电路和其他的硅设备。

这种局势的转变,也改变了半导体行业围绕摩尔定律不再团结一致。“大家都不确定新的研究规划蓝图意味着什么,”爱荷华大学计算机科学家丹尼尔·里德(Daniel Reed)表示。位于华盛顿DC的半导体行业协会(The Semiconductor Industry Association, SIA)代表所有美国半导体企业,已经表示不再参与全球半导体行业研究规划蓝图的章程,而是自行决定研发进度。

尽管摩尔定律已经走向黄昏,但这并不意味着半导体行业停止了发展。丹尼尔·里德将之与飞机制造行业进行比较:“现在的波音787并不比上世纪50年代的波音707快多少——但这两个型号的飞机可差太多了,波音787的创新体现在其他地方,比如全电子控制、碳纤维机身等,计算机行业也是如此,创新将会继续,但是会体现在更细小和更复杂的地方。”

“热死亡”

全球半导体行业协会遇到的第一个大的问题并非突然出现,加尔吉尼在1989年就曾经对此进行过警告,然而问题来临之时对行业还是造成了不小的冲击:芯片变得太小。

“曾经只要我们可以将所有的东西都缩小,问题就会自动解决,”加州圣塔克拉拉第三个千年测试解决方案(Third Millennium Test Solutions)公司的CEO比尔·鲍特姆斯(Bill Bottoms)表示:“芯片会变得更快,耗能更少。”

但是到了本世纪初,微电路缩小到90纳米以下的时候,上述“自动解决”的方式开始不再灵光,随着越来越小的硅电路里的电子移动越来越快,芯片开始变得过热。

这是一个很严重的问题,处理器运行产生的热量很难消除,所以,芯片制造商选择了他们仅有的解决办法,加尔吉尼说,设备商不再追求绝对的计算次数,也就是处理器执行指令的速度。这样等于给芯片的电子运行速度加了上限,同时限制了产生的热量,2004年以来,这个运行速度的上限从没变过。

第二,虽然速度无法再提升,但为了将芯片性能按照摩尔定律进行提升,制造商对芯片内部电路重新进行了设计,每个芯片不再仅有一个处理器(或“内核”),而是两个、四个甚至更多(现在的电脑和手机的芯片很多都是四核或者八核处理器)。总的来说,原本一个千兆赫的内核现在可以分为四个250兆赫的内核。不过,在现实中,要使用八个处理器,意味着一个问题需要被分成八个部分,很多算法很难甚至无法做到这一点,“如果有部分没被利用,等于你的处理速度升级还是受到了限制,”加尔吉尼说。

尽管如此,上述两大措施的结合,还是保证了制造商在发展进度上跟上了摩尔定律,现在的问题是,到2020年,当微电路缩小到会受到量子效应影响的时候会发生什么情况?下一步会是什么样子?“我们还没有解决方案,”参与制作新的行业规划蓝图的一名工程师陈安(音译)表示。

对此,行业内并不是没有想法,一种可能是去发展完全新的范式,比如量子计算,或者神经形态计算(neuromorphic computing),前者对于某些计算有潜力达到指数级的提升,后者则是模拟大脑神经元的计算和处理方式。但是,这两种范式目前仍还都存在实验室研究阶段,而且很多研究人员认为,量子计算只对某些特定领域有优势,而处理日常任务仍然是电子计算更优。“想想吧,用量子计算去记账是什么概念?”加州伯克利劳伦斯国家实验室的负责人约翰·莎尔福(John Shalf)说。

寻找其他材料

如果一定要保留电子计算的范式,也有办法,那就是寻求一种“毫伏开关”——一种在计算速度上不亚于硅晶片,但发热量显著低于硅的材料。可行的方案包括了2D类石墨烯复合材料到自旋电子材料(spintronic materials ),后者可以通过让电子快速旋转来进行计算(现在的硅材料是电子发生移动来计算)。“当你跳出现有的技术的限制,就会发展可供研究开发的领域非常多。”半导体研究联合体(Semiconductor Research Corporation,src)的物理学家托马斯·西斯(Thomas Theis)表示。

然而,这些方案目前也都仅限于实验室研究阶段,目前行业里仍未找到可以完全替代硅的材料,于是,不少研究人员开始在保留硅材料的前提下想办法,也就是从架构的角度将硅材料以全新的方式进行配置,比如走向3D:既然可以将电路蚀刻到硅平面的表面,为何不试试打造成“摩天大楼”,将表面已经蚀刻进电路的薄硅片堆积起来呈立体的形状?然而,现实中,这种方式目前只能用于纯存储类芯片,因为存储类芯片不存在发热过度的问题,它们的电路只在与存储单元( memory cell )接触的时候才产生能耗,而这种接触发生的并不多。目前存储芯片的一些设计就采用了这种方式,比如已经被三星、美光科技使用的“混合存储立方体”(Hybrid Memory Cube,类似“夹心饼干” )设计,就是将多层存储硅晶片堆起来。

微处理器要做成3D的难度就大很多,将一层又一层的发热物体堆积起来,只会让它们变得更热,一种解决方案是将存储和微处理器芯片完全分开,至少可以分走50%的热量(虽然在两者之间传递数据依然会产生新的热量),将它们在纳米级别上一层一层堆起来做成3D。

这在现实中依然很难实现,因为目前微处理器和存储芯片的制造流程完全不同,无法在同一条流水线上进行生产,要将它们堆起来,需要对芯片的结构进行全面重新设计。但是,已经有不少研究机构正在朝这个方向努力并且有希望可以成功,比如斯坦福大学的电子工程师苏哈斯施·米特拉(Subhasish Mitra )和他的团队已经设计出一种混合的芯片架构,可以将存储单元和碳纳米管做成的晶体管上下堆到一起,每层之间可以传递电流,米特拉的团队认为这种架构的耗能将只有现在的标准芯片耗能的千分之一或更低。

移动化

除了发热,摩尔定律遇到的第二大挑战是,计算设备走向移动化。

25 年前,计算机的概念只包括台式电脑和 笔记本 电脑,超级电脑和数据中心基本上使用的是和台式和笔记本电脑一样的微处理器,不过就是数量多了些。但是现在,计算机的概念早已进行了延伸,智能手机、平板电脑、智能手表和其他可穿戴设备等都是新的计算设备,而这些新式计算设备对处理器的需求与其前辈电脑差别非常大。







请到「今天看啥」查看全文