正文
箱线图
箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图。在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具。就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义。
下面这张图展示了Bar plot、Box plot、Volin plot和Bean plot对数据分布的反应。从Bar plot上只能看到数据标准差或标准误不同;Box plot可以看到数据分布的集中性不同;Violin plot和Bean plot展示的是数据真正的分布,尤其是对Biomodal数据的展示。
Boxplot从下到上展示的是最小值,第一四分位数 (箱子的下边线)、中位数 (箱子中间的线)、第三四分位数 (箱子上边线)、最大值,具体解读参见刘永鑫的扩增子图表解读1箱线图:Alpha多样性,老板再也不操心的我文献阅读了。
http://www.nature.com/nmeth/journal/v11/n2/full/nmeth.2811.html
一步步解析箱线图绘制
假设有这么一个基因表达矩阵,第一列为基因名字,后面几列为样品名字,想绘制下样品中基因表达的整体分布。
profile="Name;2cell_1;2cell_2;2cell_3;4cell_1;4cell_2;4cell_3;zygote_1;zygote_2;zygote_3
A;4;6;7;3.2;5.2;5.6;2;4;3
B;6;8;9;5.2;7.2;7.6;4;6;5
C;8;10;11;7.2;9.2;9.6;6;8;7
D;10;12;13;9.2;11.2;11.6;8;10;9
E;12;14;15;11.2;13.2;13.6;10;12;11
F;14;16;17;13.2;15.2;15.6;12;14;13
G;15;17;18;14.2;16.2;16.6;13;15;14
H;16;18;19;15.2;17.2;17.6;14;16;15
I;17;19;20;16.2;18.2;18.6;15;17;16
J;18;20;21;17.2;19.2;19.6;16;18;17
L;19;21;22;18.2;20.2;20.6;17;19;18
M;20;22;23;19.2;21.2;21.6;18;20;19
N;21;23;24;20.2;22.2;22.6;19;21;20
O;22;24;25;21.2;23.2;23.6;20;22;21"
读入数据并转换为ggplot2需要的长数据表格式 (经过前面几篇的练习,这应该都很熟了)
profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
library(ggplot2)
library(reshape2)
data_m <- melt(profile_text)
head(data_m)
variable value
1 2cell_1 4
2 2cell_1 6
3 2cell_1 8
4 2cell_1 10
5 2cell_1 12
6 2cell_1 14
像往常一样,就可以直接画图了。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_boxplot() +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
dev.off()
箱线图出来了,看上去还可以,再加点色彩。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_boxplot(aes(fill=factor(variable))) +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
dev.off()
再看看Violin plot
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) +
geom_violin(aes(fill=factor(variable))) +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
dev.off()
还有Jitter plot (这里使用的是ggbeeswarm包)
library(ggbeeswarm)
data_m2 <- data_m[grepl("_3", data_m$variable),]
p <- ggplot(data_m2, aes(x=variable, y=value),color=variable) +
geom_quasirandom(aes(colour=factor(variable))) +
theme_bw() + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), legend.key=element_blank()) +
theme(legend.position="none")
ggsave(p, filename="jitterplot.pdf", width=14, height=8, units=c("cm"))
绘制单个基因 (A)的箱线图
为了更好的展示效果,下面的矩阵增加了样品数量和样品的分组信息。
profile="Name;2cell_1;2cell_2;2cell_3;2cell_4;2cell_5;2cell_6;4cell_1;4cell_2;4cell_3;4cell_4;4cell_5;4cell_6;zygote_1;zygote_2;zygote_3;zygote_4;zygote_5;zygote_6
A;4;6;7;5;8;6;3.2;5.2;5.6;3.6;7.6;4.8;2;4;3;2;4;2.5
B;6;8;9;7;10;8;5.2;7.2;7.6;5.6;9.6;6.8;4;6;5;4;6;4.5"
profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
data_m = data.frame(t(profile_text['A',]))
data_m$sample = rownames(data_m)
data_m[grepl('_[123]', data_m$sample),]
A sample
2cell_1 4.0 2cell_1
2cell_2 6.0 2cell_2
2cell_3 7.0 2cell_3
4cell_1 3.2 4cell_1
4cell_2 5.2 4cell_2
4cell_3 5.6 4cell_3
zygote_1 2.0 zygote_1
zygote_2 4.0 zygote_2
zygote_3 3.0 zygote_3
获得样品分组信息 (这个例子比较特殊,样品的分组信息就是样品名字下划线前面的部分)
group = unlist(lapply(strsplit(data_m$sample,"_"), function(x) x[1]))
data_m$group = group
data_m[grepl('_[123]', data_m$sample),]
A sample group
2cell_1 4.0 2cell_1 2cell
2cell_2 6.0 2cell_2 2cell
2cell_3 7.0 2cell_3 2cell
4cell_1 3.2 4cell_1 4cell
4cell_2 5.2 4cell_2 4cell
4cell_3 5.6 4cell_3 4cell
zygote_1 2.0 zygote_1 zygote
zygote_2 4.0 zygote_2 zygote
zygote_3 3.0 zygote_3 zygote
如果没有这个规律,也可以提到类似于下面的文件,指定样品所属的组的信息。
sampleGroup_text="Sample;Group
zygote_1;zygote
zygote_2;zygote
zygote_3;zygote
zygote_4;zygote
zygote_5;zygote
zygote_6;zygote
2cell_1;2cell
2cell_2;2cell
2cell_3;2cell
2cell_4;2cell
2cell_5;2cell
2cell_6;2cell
4cell_1;4cell
4cell_2;4cell
4cell_3;4cell
4cell_4;4cell
4cell_5;4cell
4cell_6;4cell"
矩阵准备好了,开始画图了 (小提琴图做例子,其它类似)
data_m$group <- factor(data_m$group, levels=c("zygote","2cell","4cell"))
p <- ggplot(data_m, aes(x=group, y=A),color=group) +
geom_violin(aes(fill=factor(group))) +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
长矩阵绘制箱线图
常规矩阵绘制箱线图要求必须是个方正的矩阵输入,而有时想比较的几个组里面检测的值数目不同。比如有三个组,GrpA组检测了6个病人,GrpB组检测了10个病人,GrpC组是12个正常人的检测数据。这时就很难形成一个行位检测值,列为样品的矩阵,长表格模式就适合与这种情况。
long_table <- "Grp;Value
GrpA;10
GrpA;11
GrpA;12
GrpB;5
GrpB;4
GrpB;3
GrpB;2
GrpC;2
GrpC;3"
long_table <- read.table(text=long_table,sep="\t",header=1,check.names=F)
p <- ggplot(data_m, aes(x=Grp, y=Value),color=Grp) +
geom_violin(aes(fill=factor(Grp))) +
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
dev.off()
长表格形式自身就是常规矩阵melt后的格式,这种用来绘制箱线图就很简单了,就不做解释了。
R绘图学习
R语言学习 - 入门环境Rstudio
R语言学习 - 热图绘制 (heatmap)
R语言学习 - 基础概念和矩阵操作
R语言学习 - 热图美化
R语言学习 - 热图简化
R语言学习 - 线图绘制
R语言学习 - 线图一步法
文章集锦
Linux学习 R统计绘图 Python教程 Perl学习
生信傻瓜 NGS持续更新中 (链接失效,点击菜单知识库查看)
学习生信,长按关注
学习宏基因组,长按关注