专栏名称: 互联网后端架构
主要介绍Java后端架构。其中也会掺杂一些前端、GO、Python、Linux,目标:全栈工程师!---好像很牛叉的样子 ^-^
目录
相关文章推荐
51好读  ›  专栏  ›  互联网后端架构

Loki :一个可扩展,高可用性,多用户的日志聚合系统

互联网后端架构  · 公众号  · 架构  · 2020-06-21 12:41

正文

最近,在对公司容器云的日志方案进行设计的时候,发现主流的ELK或者EFK比较重,再加上现阶段对于ES复杂的搜索功能很多都用不上最终选择了Grafana开源的Loki日志系统,下面介绍下Loki的背景。

背景和动机

当我们的容器云运行的应用或者某个节点出现问题了,解决思路应该如下:


我们的监控使用的是基于Prometheus体系进行改造的,Prometheus中比较重要的是Metric和Alert,Metric是来说明当前或者历史达到了某个值,Alert设置Metric达到某个特定的基数触发了告警,但是这些信息明显是不够的。我们都知道,Kubernetes的基本单位是Pod,Pod把日志输出到stdout和stderr,平时有什么问题我们通常在界面或者通过命令查看相关的日志,举个例子:当我们的某个Pod的内存变得很大,触发了我们的Alert,这个时候管理员,去页面查询确认是哪个Pod有问题,然后要确认Pod内存变大的原因,我们还需要去查询Pod的日志,如果没有日志系统,那么我们就需要到页面或者使用命令进行查询了:


如果,这个时候应用突然挂了,这个时候我们就无法查到相关的日志了,所以需要引入日志系统,统一收集日志,而使用ELK的话,就需要在Kibana和Grafana之间切换,影响用户体验。所以 ,loki的第一目的就是最小化度量和日志的切换成本,有助于减少异常事件的响应时间和提高用户的体验。

ELK存在的问题

现有的很多日志采集的方案都是采用全文检索对日志进行索引(如ELK方案),优点是功能丰富,允许复杂的操作。但是,这些方案往往规模复杂,资源占用高,操作苦难。很多功能往往用不上,大多数查询只关注一定时间范围和一些简单的参数(如host、service等),使用这些解决方案就有点杀鸡用牛刀的感觉了。


因此,Loki的第二个目的是,在查询语言的易操作性和复杂性之间可以达到一个权衡。

成本

全文检索的方案也带来成本问题,简单的说就是全文搜索(如ES)的倒排索引的切分和共享的成本较高。后来出现了其他不同的设计方案如:

OKlog ,采用最终一致的、基于网格的分布策略。这两个设计决策提供了大量的成本降低和非常简单的操作,但是查询不够方便。因此,Loki的第三个目的是,提高一个更具成本效益的解决方案。

整体架构

Loki的架构如下:


不难看出,Loki的架构非常简单,使用了和Prometheus一样的标签来作为索引,也就是说,你通过这些标签既可以查询日志的内容也可以查询到监控的数据,不但减少了两种查询之间的切换成本,也极大地降低了日志索引的存储。Loki将使用与Prometheus相同的服务发现和标签重新标记库,编写了pormtail,在Kubernetes中promtail以DaemonSet方式运行在每个节点中,通过Kubernetes API等到日志的正确元数据,并将它们发送到Loki。下面是日志的存储架构:







请到「今天看啥」查看全文