专栏名称: 烯碳资讯
汇聚全球石墨烯及先进碳行业资讯,搭建全球石墨烯及先进碳行业服务平台
目录
相关文章推荐
51好读  ›  专栏  ›  烯碳资讯

石墨烯VS碳管VS钛酸锂......锂电池负极材料谁最牛?

烯碳资讯  · 公众号  ·  · 2017-07-10 15:41

正文


小烯导读


锂电池负极材料的能量密度是影响锂电池能量密度的主要因素之一,锂电池的正极材料、负极材料、电解质、隔膜被称为锂电池的四个最核心材料。下面我们简单介绍一下各类负极材料的性能指标、优缺点及可能的改进方向。


图1碳纳米管负极料


锂电池主要负极材料有锡基材料、锂基材料、钛酸锂、碳纳米材料、石墨烯材料等。锂电池负极材料的能量密度是影响锂电池能量密度的主要因素之一,锂电池的正极材料、负极材料、电解质、隔膜被称为锂电池的四个最核心材料。下面我们简单介绍一下各类负极材料的性能指标、优缺点及可能的改进方向。

碳纳米管


碳纳米管是一种石墨化结构的碳材料,自身具有优良的导电性能,同时由于其脱嵌锂时深度小、行程短,作为负极材料在大倍率充放电时极化作用较小,可提高电池的大倍率充放电性能。


然而,碳纳米管直接作为锂电池负极材料时,会存在不可逆容量高、电压滞后及放电平台不明显等问题。如Ng等采用简单的过滤制备了单壁碳纳米管,将其直接作为负极材料,其首次放电容量为1700mAh/g,可逆容量仅为400mAh/g。


碳纳米管在负极中的另一个应用是与其他负极材料(石墨类、钛酸锂、锡基、硅基等)复合,利用其独特的中空结构、高导电性及大比表面积等优点作为载体改善其他负极材料的电性能。如郭等采用化学气相沉积法,在膨胀石墨的孔洞中原位生长碳纳米管,合成了膨胀石墨/碳纳米管复合材料,其首次可逆容量为443mAh/g,以1C倍率充放电循环50次后,可逆容量仍可达到259mAh/g。碳纳米管的中空结构及膨胀石墨的孔洞,提供了大量的锂活性位,而且这种结构能缓冲材料在充放电过程中产生的体积效应。


石墨烯

2004年英国Manchester大学研究者首次发现石墨烯材料,并获得诺贝尔奖。石墨烯是一种由碳六元环形成的新型碳材料,具有很多优异的性能,如大比表面(约2600m2g-1)、高导热系数(约5300Wm-1K-1)、高电子导电性(电子迁移率为15000cm2V-1s-1)和良好的机械性能,被作为锂离子电池材料而备受关注。


石墨烯直接作为锂电池负极材料时,具有非常可观的电化学性能。试验室曾采用水合肼作为还原剂、制备了丛林形貌的石墨烯片,其兼具硬碳和软碳特性,且在高于0.5V电压区间,表现出电容器的特性。


图2石墨烯负极材料


石墨烯负极材料在1C放电倍率下,首次可逆容量为650mAh/g,100次充放电循环后容量仍可达到460mAh/g。石墨烯还可作为导电剂,与其他负极材料复合,提高负极材料的电化学性能。如Zai等采用超声分散法制备了Fe3O4/石墨烯复合材料,在200mA/g的电流密度下放电,经过50次循环后,容量为1235mAh/g;在5000和10000mA/g电流密度下放电,经过700次循环后,容量分别能达到450mAh/g和315mAh/g,表现出较高的容量和良好的循环性能。


钛酸锂


尖晶石型钛酸锂被作为一种备受关注的负极材料,因具有如下优点:


1)钛酸锂在脱嵌锂前后几乎“零应变(脱嵌锂前后晶胞参数”a从0.836nm仅变为0.837nm);


2)嵌锂电位较高(1.55V),避免“锂枝晶”产生,安全性较高;


3)具有很平坦的电压平台;


4)化学扩散系数和库伦效率高。


钛酸锂的诸多优点决定了其具有优异的循环性能和较高的安全性,然而,其导电性不高、大电流充放电时容量衰减严重,通常采用表面改性或掺杂来提高其电导率。如肖等以Mg(NO3)2为镁源,通过固相法制备了Mg2+掺杂的钛酸锂,表明掺杂Mg2+并没有破坏钛酸锂的尖晶石晶体结构,且掺杂后材料的分散性更佳,其在10C放电倍率下的比容量可达到83.8mAh/g,是未掺杂材料的2.2倍,且经过10次充放电循环后容量无明显衰减,经交流阻抗测试表明,掺杂后材料的电荷转移电阻明显降低。 Zheng等通过高温固相法,分别采用Li2CO3和柠檬酸锂作为锂源,制备了纯相的钛酸锂和碳包覆的钛酸锂。


图3钛酸锂负极材料







请到「今天看啥」查看全文