专栏名称: DBAplus社群
围绕数据库、大数据、PaaS云,顶级大咖、技术干货,运营几个月受众过十万!成为运维圈最专注围绕“数据”的学习交流和专业社群!欢迎投稿,加入探讨。
目录
相关文章推荐
数据中心运维管理  ·  突发!新加坡一数据中心起火,一人就医 ·  昨天  
数据分析与开发  ·  请数据人立即拿下软考证书(政策风口) ·  2 天前  
数据中心运维管理  ·  计算机网络施工方案 ·  2 天前  
数据中心运维管理  ·  UPS 电源使用注意事项全解析 ·  5 天前  
数据中心运维管理  ·  AI数据中心为何需要800G光模块? ·  4 天前  
51好读  ›  专栏  ›  DBAplus社群

弥补MySQL和Redis短板:看HBase怎么确保高可用

DBAplus社群  · 公众号  · 数据库  · 2019-03-25 07:15

正文


HBase是一个基于Hadoop面向列的非关系型分布式数据库(NoSQL),设计概念来源于谷歌的BigTable模型,面向实时读写、随机访问大规模数据集的场景,是一个高可靠性、高性能、高伸缩的分布式存储系统,在大数据相关领域应用广泛。


HBase系统支持对所存储的数据进行透明切分,从而使得系统的存储以及计算具有良好的水平扩展性。


知乎从2017年起开始逐渐采用HBase系统存储各类在线业务数据,并在HBase服务之上构建各类应用模型以及数据计算任务。


  • 伴随着知乎这两年的发展,知乎核心架构团队基于开源容器调度平台Kubernetes打造了一整套HBase服务平台管理系统;

  • 经过近两年的研发迭代,目前已经形成了一套较为完整的HBase自动化运维服务体系,能够完成HBase集群的快捷部署、平滑扩缩容、HBase组件细粒度监控、故障跟踪等功能。


背景


知乎对HBase的使用经验不算太长,在2017年初的时候,HBase服务主要用于离线算法、推荐、反作弊,还有基础数据仓库数据的存储计算,通过MapReduce和Spark来进行访问。而在当时知乎的在线存储主要采用MySQL和Redis系统,其中:


  • MySQL 支持大部分的业务数据存储,当数据规模增大后有一些需要进行扩容的表,分表会带来一定的复杂性,有些业务希望能屏蔽这个事情,还有一些是因为历史原因在表设计的时候用rmsdb的形式存了一些本该由列存储的数据,希望做一下迁移。此外MySQL基于SSD,虽然性能很好,花销也比较大;

  • Redis 可以提供大规模的缓存,也可以提供一定的存储支持。Redis性能极好,主要的局限是做数据Resharding较为繁琐,其次是内存成本较高。


针对以上两种在线存储所存在的一些问题,我们希望建立一套在线存储NoSQL服务,对以上两种存储作为一个补充。


选型期间我们也考虑过Cassandra,早期一些业务曾尝试使用Cassandra作为存储,隔壁团队在运维了一段时间的Cassandra系统之后,遇到不少的问题,Cassandra系统可操作性没有达到预期,目前除了Tracing相关的系统,其他业务已经放弃使用Cassandra。


我们从已有的离线存储系统出发,在衡量了稳定性、性能、代码成熟度、上下游系统承接、业界使用场景以及社区活跃度等方面之后,选择了HBase,作为知乎在线存储的支撑组件之一。


一、HBase On Kubernetes


  • 初期知乎只有一套进行离线计算的集群,所有业务都跑在一个集群上,并且HBase集群和其他离线计算yarn以及Impala混合部署,HBase的日常离线计算和数据读写都严重受到其他系统影响;

  • 并且HBase的监控都只停留在主机层面的监控,出现运行问题时,进行排查很困难,系统恢复服务时间较长,这种状态下,我们需要重新构建一套适用于在线服务的系统。


在这样的场景下,我们对在线HBase服务的需求是明确的:


隔离性


  • 从业务方的视角来说,希望相关的服务做到环境隔离,权限收归业务,避免误操作和业务相互影响;

  • 对于响应时间,服务的可用性,都可以根据业务的需要指定SLA;

  • 对于资源的分配和blockcache等参数的配置也能够更加有适应性,提供业务级别的监控和报警,快速定位和响应问题;


资源利用率: 从运维的角度,资源的分配要合理,尽可能的提升主机cpu,内存包括磁盘的有效利用率;


成本控制: 团队用最小的成本去得到最大的运维收益,所以需要提供便捷的调用接口,能够灵活的进行HBase集群的申请、扩容、管理、 监控。同时成本包括机器资源,还有工程师。当时我们线上的这套系统是由一位工程师独立去进行维护。


综合以上需求,参考我们团队之前对基础设施平台化的经验,最终的目标是把HBase服务做成基础组件服务平台向提供给上游业务,这个也是知乎技术平台部门工作思路之一,尽可能的把所有的组件对业务都黑盒化,接口化,服务化。同时在使用和监控的粒度上尽可能的准确,细致,全面。这是我们构建在线HBase管理运维系统的一个初衷。


二、Why Kubernetes?


前文说到我们希望将整个HBase系统平台服务化,那就涉及到如何管理和运维HBase系统,知乎在微服务和容器方面的工作积累和经验是相当丰富的。


  • 在当时我们所有的在线业务都已经完成了容器化的迁移工作,超万级别的业务容器平稳运行在基于mesos的容器管理平台Bay上(参见[1]);

  • 与此同时,团队也在积极的做着Infrastructure容器化的尝试,已经成功将基础消息队列组件Kafka容器化运行于Kubernetes系统之上(参见[2]),因此我们决定也将HBase通过Kubernetes来进行资源的管理调度。


Kubernetes[3]是谷歌开源的容器集群管理系统,是Google多年大规模容器管理技术Borg的开源版本。Kubernetes提供各种维度组件的资源管理和调度方案,隔离容器的资源使用,各个组件的HA工作,同时还有较为完善的网络方案。


Kubernetes被设计作为构建组件和工具的生态系统平台,可以轻松地部署、扩展和管理应用程序。有着Kubernetes大法的加持,我们很快有了最初的落地版本([4])。


三、初代


最初的落地版本架构见下图,平台在共享的物理集群上通过Kubernetes(以下简称K8S)API建立了多套逻辑上隔离的HBase集群,每套集群由一组Master和若干个Regionserver(以下简称RS)构成,集群共享一套HDFS存储集群,各自依赖的Zookeeper集群独立;集群通过一套管理系统Kubas服务来进行管理([4])。


第一代架构


模块定义


在K8S中如何去构建HBase集群,首先需要用K8S本身的基础组件去描述HBase的构成;K8S的资源组件有以下几种:


  • Node: 定义主机节点,可以是物理机,也可以是虚拟机;

  • Pod: 一组紧密关联的容器集合,是K8S调度的基本单位;

  • ReplicationController: 一组pod的控制器,通过其能够确保pod的运行数量和健康,并能够弹性伸缩。


结合之前Kafka on K8S的经验,出于高可用和扩展性的考虑,我们没有采用一个Pod里带多个容器的部署方式,统一用一个ReplicationController定义一类HBase组件,就是上图中的Master,Regionserver还有按需创建的Thriftserver;通过以上概念,我们在K8S上就可以这样定义一套最小HBase集群:


  • 2*MasterReplicationController;

  • 3*RegionserverReplicationController;

  • 2*ThriftserverReplicationController(可选);


四、高可用以及故障恢复


作为面向在线业务服务的系统,高可用和故障转移是必需在设计就要考虑的事情,在整体设计中,我们分别考虑组件级别、集群级别和数据存储级别的可用性和故障恢复问题。


1、组件级别


HBase本身已经考虑了很多故障切换和恢复的方案:


  • Zookeeper集群: 自身设计保证了可用性;

  • Master: 通过多个Master注册在Zookeeper集群上来进行主节点的HA和更新;

  • RegionServer: 本身就是无状态的,节点失效下线以后会把上面的Region自动迁走,对服务可用性不会有太大影响;

  • Thriftserver: 当时业务大多数是Python和Golang,通过用Thrift对HBase的进行,Thriftserver本身是单点的,这里我们通过HAProxy来代理一组Thriftserver服务;

  • HDFS: 本身又由Namenode和DataNode节点组成,Namenode我们开启HA功能,保证了HDFS的集群可用性;


2、集群级别


  • Pod容器失效: Pod是通过Replication Controller维护的,K8S的Controller Manager会在它的存储etcd去监听组件的失效情况,如果副本少于预设值会自动新的Pod容器来进行服务;

  • Kubernetes集群崩溃: 该场景曾经在生产环境中出现过,针对这种情况,我们对SLA要求较高的业务采用了少量物理机搭配容器的方式进行混合部署,极端场景出现时,可以保证重要业务收到的影响可控;


3、数据级别


所有在K8S上构建的HBase集群都共享了一套HDFS集群,数据的可用性由HDFS集群的多副本来提供。


五、实现细节


1、资源分配


初期物理节点统一采用2*12核心的cpu,128G内存和4T的磁盘,其中磁盘用于搭建服务的HDFS,CPU和内存则在K8S环境中用于建立HBase相关服务的节点。


Master组件的功能主要是管理HBase集群,Thriftserver组件主要承担代理的角色,所以这两个组件资源都按照固定额度分配。


在对Regionserver组件进行资源分配设计的时候,考虑两种方式去定义资源:


资源分配方式


按照业务需求分配:


  • 根据业务方对自身服务的描述,对相关的QPS以及SLA进行评估,为业务专门配置参数,包含blockcache,region大小以及数量等;

  • 优点是针对业务优化,能够充分的利用资源,降低业务的资源占用成本;

  • 管理成本增加,需要对每一个业务进行评估,对平台维护人员非常不友好,同时需要业务同学本身对HBase有理解;


统一规格的资源分配:


  • CPU以及MEM都按照预先设定好的配额来分配,提供多档的配置,将CPU和MEM的配置套餐化;

  • 方便之处在于业务扩容时直接增加Regionserver的个数,配置稳定,运维成本较低,遇到问题时排障方便;

  • 针对某些有特有访问方式的业务有局限性,如CPU计算型,大KV存储,或者有MOB需求的业务,需要特殊的定制;

  • 介于当时考虑接入的在线业务并不多,所以采用了按业务定制的方式去配置Regionserver,正式环境同一业务采用统一配置的一组Regionserver,不存在混合配置的Regionserver组。


2、参数配置


基础镜像基于cdh5.5.0-hbase1.0.0构建:


# Example for hbase dockerfile

# install cdh5.5.0-hbase1.0.0

ADD hdfs-site.xml /usr/lib/hbase/conf/

ADD core-site.xml /usr/lib/hbase/conf/

ADD env-init.py /usr/lib/hbase/bin/

ENV JAVA_HOME /usr/lib/jvm/java-8-oracle

ENV HBASE_HOME /usr/lib/hbase

ENV HADOOP_PREFIX /usr/lib/hadoop

ADD env-init.py /usr/lib/hbase/bin/

ADD hadoop_xml_conf.sh /usr/lib/hbase/bin/


  • 固定的环境变量,如JDK_HOME,HBASE_HOME,都通过ENV注入到容器镜像中;

  • 与HDFS相关的环境变量,如hdfs-site.xml和core-site.xml预先加入Docker镜像中,构建的过程中就放入了HBase的相关目录中,用以确保HBase服务能够通过对应配置访问到HDFS;

  • 与HBase相关的配置信息,如组件启动依赖的Zookeeper集群地址,HDFS数据目录路径,堆内存以及GC参数等,这些配置都需要根据传入KubasService的信息进行对应变量的修改,一个典型的传入参数示例。


REQUEST_DATA = {

"name": 'test-cluster',

"rootdir": "hdfs://namenode01:8020/tmp/hbase/test-cluster",

"zkparent": "/test-cluster",

"zkhost": "zookeeper01,zookeeper02,zookeeper03",

"zkport": 2181,

"regionserver_num": '3',

"codecs": "snappy",

"client_type": "java",

"cpu": '1',

"memory": '30',

"status": "running",

}


通过上面的参数KubasService启动Docker时,在启动命令中利用hadoop_xml_conf.sh和env-init.py修改hbase-site.xml和hbase-env.sh文件来完成最后的配置注入,如下所示:


source /usr/lib/hbase/bin/hadoop_xml_conf.sh

&& put_config --file /etc/hbase/conf/hbase-site.xml --property hbase.regionserver.codecs --value snappy

&& put_config --file /etc/hbase/conf/hbase-site.xml --property zookeeper.znode.parent --value /test-cluster

&& put_config --file /etc/hbase/conf/hbase-site.xml --property hbase.rootdir --value hdfs://namenode01:8020/tmp/hbase/test-cluster

&& put_config --file /etc/hbase/conf/hbase-site.xml --property hbase.zookeeper.quorum --value zookeeper01,zookeeper02,zookeeper03

&& put_config --file /etc/hbase/conf/hbase-site.xml --property hbase.zookeeper.property.clientPort --value 2181

&& service hbase-regionserver start && tail -f /var/log/hbase/hbase-hbase-regionserver.log


3、网络通信


网络方面,采用了Kubernetes上原生的网络模式,每一个Pod都有自己的IP地址,容器之间可以直接通信,同时在Kubernetes集群中添加了DNS自动注册和反注册功能,以Pod的标识名字作为域名,在Pod创建和重启和销毁时将相关信息同步全局DNS。


在这个地方我们遇到过问题,当时我们的DNS解析不能在Docker网络环境中通过IP反解出对应的容器域名,这就使得Regionserver在启动之后向Master注册和向Zookeeper集群注册的服务名字不一致,导致Master中对同一个Regionserver登记两次,造成Master与Regionserver无法正常通信,整个集群无法正常提供服务。


经过我们对源码的研究和实验之后,我们在容器启动Regionserver服务之前修改/etc/hosts文件,将Kubernetes对注入的hostname信息屏蔽。


这样的修改让容器启动的HBase集群能够顺利启动并初始化成功,但是也给运维提升了复杂度,因为现在HBase提供的Master页现在看到的Regionserver都是IP形式的记录,给监控和故障处理带来了诸多不便。


六、存在问题


初代架构顺利落地,在成功接入了近十个集群业务之后,这套架构面临了以下几个问题:


管理操作业务HBase集群较为繁琐


  • 需要手动提前确定HDFS集群的存储,以及申请独立Zookeeper集群,早期为了省事直接多套HBase共享了一套Zookeeper集群,这和我们设计的初衷不符合;

  • 容器标识符和HBaseMaster里注册的regionserver地址不一致,影响故障定位;

  • 单Regionserver运行在一个单独的ReplicationController(以下简称RC),但是扩容缩容为充分利用RC的特性,粗暴的采用增加或减少RC的方式进行扩容缩容。


HBase配置


  • 最初的设计缺乏灵活性,与HBase服务配置有关的hbase-site.xml以及hbase-env.sh固化在DockerImage里,这种情况下,如果需要更新大量配置,则需要重新build镜像;

  • 由于最初设计是共享一套HDFS集群作为多HBase集群的存储,所以与HDFS有关的hdfs-site.xml和core-site.xml配置文件也被直接配置进了镜像。如果需要在Kubasservice中上线依赖其他HDFS集群的HBase,也需要重新构建镜像。


HDFS隔离


  • 随着接入HBase集群的增多,不同的HBase集群业务对HDFS的IO消耗有不同的要求,因此有了分离HBase依赖的HDFS集群的需求;

  • 主要问题源自Docker镜像对相关配置文件的固化,与HDFS有关的hdfs-site.xml和core-site.xml配置文件与相关Docker镜像对应,而不同Docker镜像的版本完全由研发人员自己管理,最初版本的实现并未考虑到这些问题。


监控运维


  • 指标数据不充分,堆内堆外内存变化,region以及table的访问信息都未有提取或聚合;

  • Region热点定位较慢,无法在短时间内定位到热点Region;

  • 新增或者下线组件只能通过扫KubasService的数据库来发现相关变更,组件的异常如RegionServer掉线或重启,Master切换等不能及时反馈;


七、重构







请到「今天看啥」查看全文


推荐文章
数据中心运维管理  ·  突发!新加坡一数据中心起火,一人就医
昨天
数据分析与开发  ·  请数据人立即拿下软考证书(政策风口)
2 天前
数据中心运维管理  ·  计算机网络施工方案
2 天前
数据中心运维管理  ·  UPS 电源使用注意事项全解析
5 天前
数据中心运维管理  ·  AI数据中心为何需要800G光模块?
4 天前
有味读书  ·  为什么她长的丑,还有人娶?
7 年前