专栏名称: AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
相关文章推荐
深圳特区报  ·  请看,今天的深圳特区报 ·  14 小时前  
深圳特区报  ·  4月1日起,60岁以上旅客乘坐火车,有变化! ·  昨天  
深圳特区报  ·  新皇岗口岸预计年底建成!| 特报一周 ·  2 天前  
成都日报  ·  最具成都特色伴手礼,等你推荐! ·  2 天前  
成都日报  ·  最具成都特色伴手礼,等你推荐! ·  2 天前  
青岛新闻网  ·  【315特辑“家人有话说”】羊毛蚕丝含量1% ... ·  3 天前  
51好读  ›  专栏  ›  AEii国际应用能源

【Applied Energy最新原创论文】基于数字孪生技术的强化学习用于在配电系统的规划和运营中提取网络结构和负荷模式

AEii国际应用能源  · 公众号  ·  · 2023-05-12 18:30

正文

原文信息:

Digital twin based reinforcement learning for extracting network structures and load patterns in planning and operation of distribution systems

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261923004920

Highlights

Key features of network configurations, technology installations, and load patterns are digitally represented.

A novel digital twin-based distribution network model to adapt planning and operational decisions with dynamic state transitions.

Informed decisions to minimise the investment cost, power loss, loss of load, and renewable curtailment.

Synthesising scalable and computational efficient distribution networks.

摘要

低压配电网向电力系统的最后一英里输送电力,但其通常是低碳技术(如电气化供暖、储能和电动汽车)未被预见时的遗留资产。此外,利用来自配电网的海量数据为适应规划和运行策略的系统转换提供决策支持成为新的挑战。为克服这些挑战,本文提出了一种基于数字孪生技术的强化学习的新型应用,以改善配电系统运行者的决策制定,关键指标包括可预测性、响应性、互操作性和自动化程度。基于卷积神经网络对于高维输入的模式识别能力,本研究通过卷积神经网络捕捉电力系统状态,即网络配置、技术组合和负荷模式。通过适应规划和操作决策,采用适应于动态系统转换的批处理强化学习算法迭代训练卷积神经网络。算例研究证明了所提模型的有效性,当系统向冬季转换时,将投资成本降低50%,并将电力损失和负荷损失维持在比基准优化低5%的水平。由于供暖电气化,未来能源情景下冬季观察到的电力消耗翻了一番。训练有素的模型可以根据系统变化精确地适应最佳决策,同时减少解决优化问题的计算时间,适用于各种规模的配电系统,向系统运行者展示了其可扩展部署的潜力。

Abstr act

Low voltage distribution networks deliver power to the last mile of the network, but are often legacy assets from a time when low carbon technologies, e.g., electrified heat, storage, and electric vehicles, were not envisaged. Furthermore, exploiting emerging data from distribution networks to provide decision support for adapting planning and operational strategies with system transitions presents a challenge. To overcome these challenges, this paper proposes a novel application of digital twins based reinforcement learning to improve decision making by a distribution system operator, with key metrics of predictability, responsiveness, interoperability, and automation. The power system states, i.e., network configurations, technological combinations, and load patterns, are captured via a convolutional neural network, chosen for its pattern recognition capability with high-dimensional inputs. The convolutional neural networks are iteratively trained through the fitted Q-iteration algorithm, as a batch mode reinforcement learning, to adapt the planning and operational decisions with the dynamic system transitions. Case studies demonstrate the effectiveness of the proposed model by reducing 50% of the investment cost when the system transitions towards the winter and maintaining the power loss and loss of load within 5% compared to the benchmark optimisation. Doubled power consumption was observed in winter under future energy scenarios due to the electrification of heat.  The trained model can accurately adapt optimal decisions according to the system changes while reducing the computational time of solving optimisation problems, for a range of scales of distribution systems, demonstrating its potential for scalable deployment by a system operator.

Keywords

Digital twin

Distribution network

Fitted Q-iteration

Load pattern

Network configuration

Reinforcement learning


Fig. 1. Framework for implementing the designed digital twin based reinforcement learning model.

Fig. 5. Schematic illustration for procedures of adapting planning and operational control decisions with transitions of a distribution system.

Fig. 6. Architecture of the designed convolutional neural networks.

Fig. 7. Flowchart of the batch reinforcement learning and interactions of the data pre-processing, neural network training, and fitted Q-iteration.

团队介绍及招聘信息

本研究由英国牛津大学、思克莱德大学、伯明翰大学的研究人员在EPSRC Analytical Middleware for Informed Distribution Networks (AMIDiNe) 项目资助下共同完成。







请到「今天看啥」查看全文