有理想主义色彩的起步期(1956-1974)
这个阶段的起步期人工智能是以“计算机不断解决以往人类从没设想过其能解决的问题”为特征的,解文字题、证明定理甚至是学习语言。正是这样的超预期激发了人们对于人工智能的畅想,对人工智能做出了大量乐观的预测。
这个阶段对于人工智能的许多尝试并不是以实际应用为目的的,许多人工智能程序更像是“玩具”,而研究者们均致力于尽快设计出能够通过“图灵测试”的人工智能机器,对于通向这一目标的路径并没有很清晰的认识。随着研究进程不断受阻,研究者很快就意识到人工智能的许多基础设施上的限制在上世纪70年代是不可能克服的。这些障碍包括极其有限的计算能力,缺乏能够处理运算量指数增长的问题的算法,缺乏数据,难以处理图像识别等感知问题,需要不断改变基础架构来适应不同的问题等。因为这些问题的限制,人工智能进入上世纪70年代以后止步不前,研究资金支持也大幅缩减,在1974年到1980年之间,人工智能进入第一波低谷。
由“专家系统”大范围应用而推动的第二波浪潮(1980-1987)
“专家系统”是一个用于模拟人类专家决策过程的计算机系统,是人工智能历史上第一个较为成功的应用,并在八十年代被许多大型企业所接受。1980年,一款名为XCON的专家系统程序被设计出来,这款程序能够根据用户的需求自动选取DEC公司计算机系统(集群)里面合适的部分来完成计算任务。在1980年到1986年间,XCON平均每年帮DEC公司节省4000万美元的成本。在这个阶段,人们逐渐意识到研发人工智能的目的不仅仅是为了设计出能通过“图灵测试”的机器,能够以现有的条件帮助人类解决在实际工作中的问题并提高效率才是更为重要的目的。
正是因为人工智能的实际应用前景被挖掘,越来越多的公司投入资金研发不同类型的专家系统,人工智能进入第二个高速发展期。这个阶段人工智能开始逐步形成一个产业,诞生了一批公司,比如硬件公司Symbolics和LispMachines,
软件公司如IntelliCorp和Aion。这个阶段最标志性的事件是HiTech和Deep Thought击败了国际象棋大师,Deep Thought也为后来IBM的Deep Blue奠定了基础。
第二波浪潮在80年代末结束了,最大的问题是“专家系统”的成本一直无法降下来,随着美国和日本经济走入低迷,市场对于人工智能的热情也大幅下降。更重要的是,苹果和IBM在这个阶段对于家用电脑的开发进入加速期,家用电脑的性能甚至逐步赶超Lisp machine,“专家系统”这样一个空间达到数亿美金的市场在顷刻间就消失了。此外,1991年日本的“第五代项目”(从1981年开始推动)的失败标志着人工智能进入第二个低潮。
由基础设施、技术融合与应用拓展共同推动的第三波浪潮(1993至今)
经过了将近半个世纪的发展,人工智能从90年代中旬终于进入了一个爆发期。在这个阶段,人工智能相关的技术已经逐步被应用到各个领域,只不过研究者们越来越弱化人工智能这个概念,大众除了“深蓝击败国际象棋世界冠军”、“AlphaGo击败围棋世界冠军”之类的事件,大都没有意识到人工智能的应用已经逐步渗透进生产和生活的方方面面。
人工智能的第三波浪潮是由
基础设施、技术融合与应用拓展
共同推动的。
(1)基础设施领域的进步
在基础设施领域,最核心的进步便是
运算能力的提升
以及
数据资源的积累
。运算能力方面,在过去将近50年的时间里,集成电路上元器件的数目持续的以几何级数增长。即便当前传统计算机性能提升已经进入瓶颈期,互联网基础设施的提升又使得云计算成为可能,把大量的计算资源组成资源池并用于动态创建高度虚拟化的资源供用户使用。云计算大大降低了人工智能的商业化运营成本,推动了人工智能的进步。
此外,GPU的广泛应用使得大规模并行计算的效率大幅提升,这也为人工智能的多任务执行提供了基础。
基础设施领域的另一个大的进步便是海量数据资源的积累。海量的数据使得机器学习的效果大幅提升,并且数据量本身的增加还能够弥补算法上的缺陷。根据IDC的统计,全球数据总量在未来的增速惊人,预计到2020年全球总数据量大约达到35ZB,是2011年的将近20倍。
(2)技术融合
人工智能是处于技术前沿的各学科融合并共同推进的领域。人工智能的开发也越来越多地将数学、系统控制、经济等领域的知识结合起来,最常用的基础工具包括贝叶斯网络、隐式马尔科夫链、信息理论、随机建模、神经网络、动态优化以及近期因谷歌的AlphaGo而闻名的蒙特卡洛树搜索。跨学科的技术融合在人工智能基础设施上表现的更为重要。
例如,在计算领域,传统的电路只能实现0或1的存储你,集成芯片或是云计算最终都是由无数个基本电路组成的,难逃“能耗”的问题,势必需要一个能够在计算能力上产生质的飞跃的设计。量子计算机在理论上能够解决这一问题,一个量子可以呈现多态,那么大规模计算所需要的量子数就大大缩减。不过,根据海森堡不确定原理,一旦外界对量子的具体状态进行观察(或者说计算机读取一个量子的状态),那么量子的状态就是确定的,不再具有多态。显然,这样的问题已经不是计算机科学能够解决的问题,势必需要基础理论研究的支持。又比如,人工智能的许多设计思想来自于脑科学研究,通过模拟人脑思考的过程来设计计算机的基础架构。
(3)应用拓展
实际应用的拓展也在激发人工智能技术的不断创新。最典型的例子是便是人工智能在机器人领域的应用,传统的机器人仅仅是数控的机械装置,不能适应变化的环境,与人类的“沟通”成本也非常高。这样的机器人越来越不适应互联网时代的生产需要,于是诞生了对于“互动机器人”的需求:机器人需要能够随时与人进行沟通修正任务(这需要对自然语言进行识别,同时要具备能够自我生成运行代码的能力)、适应随时变化的环境(比如物流机器人能够躲避障碍)、辅助人们的决策(投资顾问、医疗诊断、教育培训、智能翻译等)。这些应用领域反过来推动了人工智能技术层的进步。应用拓展的范围和经济收益也是吸引资本持续进入相关领域的重要动力。
回顾人工智能的发展历史,
在实现人工智能上有三种路线:
一是基于逻辑方法进行功能模拟的符号主义路线,代表领域有二十世纪80年代的专家系统和知识工程;二是基于统计方法仿生模拟的连接主义路线,代表领域有机器学习和人脑仿生;三是行为主义,是从进化的角度出发,基于智能控制系统的理论、方法和技术,研究拟人的智能控制行为。
从当前国外人工智能的发展情况来看,其中第二条线路是主流,基于人工神经网络的深度学习是当前最热的研究领域,被Google、Facebook、IBM、NEC以及其他互联网公司广泛使用,最典型的应用领域是图像和语音识别。
图像识别、语音识别、智能搜索是深度学习技术出现以来发展最快的几个领域,其迅速地从试验论证阶段进入到相对成熟的应用阶段。随着这些基础应用领域的成熟,一些高级应用领域的热度也逐步开始上升。例如Google在力推的自动驾驶项目,需要建立感知能力、决策能力以及不断自主学习的能力,可以说是人工智能技术的集大成者。自动驾驶技术需要算法做各种条件下面的路面目标检测、识别交通标志以及形成统一的路况感知。
从人工智能的历史来看,每一类人工智能的应用均要经过实验室阶段、试点阶段、推广阶段和普及阶段。尽管国内企业在人工智能基础科研方面与美日等国家有巨大差距,但人工智能相关的企业大都从已经进入试点阶段的技术或应用切入,并在视觉、语音识别等技术领域处于国际领先水平。根据2015年艾瑞咨询的统计,
中国人工智能领域已有近百家创业公司,约65家获得投资,共计29.1亿元人民币,其中旷视科技、优必选、云之声、SenseTime四家公司登上艾瑞独角兽榜单。
国内不同规模的企业在具体的切入点上有有所区别。百度、阿里巴巴这样的巨头公司坐拥海量的数据和计算资源,切入点更靠近基础设施层,尤其是在数据资源、算法和云计算等领域;科大讯飞、旷视科技、格林深瞳这样具有一定技术积累的企业,通常从技术层进行切入,在语音识别、视觉识别等领域不断积累技术优势;而优必选、出门问问、UBTECH等创业公司则更多的从硬件产品、虚拟场景、虚拟赋予、商业智能等应用领域切入。
以史为鉴:人工智能发展路径展望——技术领域、应用领域双轮驱动
如果将人工智能的产业链分为基础设施层、技术层和应用层,通过回顾和分析人工智能过去的发展路径,我们认为人工智能的发展往往是靠应用层的需求或是基础设施层的进步推动的,主要存在以下两种路径——需求创造供给,或者供给创造需求。
路径一:
应用层的需求推动人们对于AI技术层(算法等)的开发,技术层的进步使得基础设施的利用效率不断提高。不过,当技术层发展到一定阶段时,基础设施的利用效率提升空间很小,此时需要基础设施层的不断升级来支持,一旦基础设施层对于AI的支持跟不上,或是应用层的需求饱和,AI的前进步伐就放缓,甚至进入“寒冬”(如80年代的专家系统)。
路径二:
基础设施层的迅速进步使得技术层可以实现的拓展越来越多(比如基于大数据的海量运算的语音识别、人脸识别、搜索等),而技术层的多元化使得人们发现有大量应用层的创新可以推进,解决当前各行业的痛点,甚至创造和培育新的需求。
当前中国还处于行业应用层起步到快速发展的阶段,应用层的投资机会和投入回报率远高于技术层和基础设施层,当这个阶段出现泡沫时,投资机会可能更多地出现在技术层,当技术层停滞并出现泡沫时,投资机会可能更多在基础设施层。根据从目前人工智能的发展情况来看,技术领域的运用已经进入加速期,预计5~10年就能陆续成熟。在基础设施领域,量子计算等新型芯片模式短期内还很难实现,不过基于云端架构的并行计算模式已经逐步进入成熟期,短期内基础设施还不会对人工智能的发展形成障碍。从当前的情况来看,预计应用领域和技术领域将成为人工智能进一步发展的两个核心驱动力。
人工智能是一个跨学科、跨行业的综合性学科。
人工智能最初的核心是实现“智能”这一概念,即机器可以像人一样思考,而不只是被动式的执行人发出的每一步指令。人们研究出许多算法将这一想法得以实现,计算机开始可以自己学习,之后慢慢发展成机器算法这个研究方向。而后,由于人们对于将智能分别运用到图像、语言、声音处理和与硬件之间的互动方面的需求增加,自然语言处理、图像识别和人际交互这三个领域又各自发展成独立的研究方向,他们借用机器学习中的一些算法并更多地加入有自身特性的技术。
因此,人工智能现在演化成了机器学习、自然语言处理、图像识别以及人机交互这四大模块。
机器学习技术:
指计算机通过对大量已有数据的处理分析和学习,从而拥有预测判断和做出最佳决策的能力。这项技术与计算机科学、统计学、数学优化算法等都有着密不可分的关系。其代表算法有深入学习、人工神经网络、决策树、增强算法等。
自然语言处理技术:
指让计算机可以理解人类的语言,包括将人类语言转化为计算机程序可以处理的形式及将计算机数据转化为人类自然语言两种形式。这里指的语言可以是声音也可以是文字。这项技术的主要内容包括信息检索、信息抽取、词性标注、句法分析、多语处理、语音识别等。
图像处理技术:
指让计算机拥有人类的视觉功能,可以获得、处理并分析和理解图片或多维度数据。这项技术的主要内容包括图像获得、图像过滤和调整、特征提取等。
人机交互技术:
指计算机系统和用户可以通过人机交互界面进行交流。这项技术包括的主要内容包括计算机图像学、交互界面设计、增强现实等。
随着现在人们对这些技术单一或者多样化的运用,有一部分开发出的产品或服务也演变出各自的子领域并迅速发展。根据行业特性的不同,我们将人工智能细分成13个子领域,如图26所示。咨询公司Venture Scanner统计,2016年全球人工智能公司已突破1000家,跨越13个子门类,融资金额高达48亿美元。整体来看,AI产业不论是行业规模、还是吸金能力都在飞速扩张中。根据Bank of America预测的数据:未来五年人工智能的年复合增速36%,预计2020年将达到700亿美元。在上述13细分行业中,研究机器学习(应用)的人工智能公司数目最多,达260家,约占整个行业的30%。
横向比较:机器学习、图像识别、智能机器人最具发展潜力
我们从未来发展空间、产业投资回报率、产业成熟度、应用场景拓展广度等几个方面来横向比较人工智能的各个细分领域的发展前景。
从未来市场空间和行业增速来看,发展速度最快、市场空间最大的三个领域是机器学习、图像识别和智能机器人。
根据咨询公司Tractica的预测,机器学习领域从2015年1.09亿美元的市场规模,将以年复合增长率超过60%的速度飞速发展,预计2024年将突破100亿美元。目前已经拥有庞大市场容量的图像识别同样不可小觑。2014年图像识别领域市场规模已达57亿美元,在接下来的五年内将以42%的年复合增长率继续扩张,预计2019 年可达333亿美元。此外,智能机器人领域也将随着应用场景的不断扩展迎来一轮高速增长MarketsAndMarkets
的机器人市场研究数据显示:机器人行业的总市值将以每年20%的增速增长,并于2020年达到约80亿美元,若将硬件与软件细分开来,软件部分的增速高达30%。
从投资回报率和产业成熟度来看,机器学习、图像识别、智能机器人仍然是最受产业资本青睐的三个细分领域。
众所周知,风投公司倾向于将资金流向投资回报率最高的新兴产业,对比人工智能领域的风险融资额度能够很好地反映该领域的投资回报率。Venture Scanner公司的调查数据显示:无论从总体融资额度还是企业平均融资额度,机器学习都牢牢占据榜首;图像识别领域的总体融资额度和企业平均融资额度紧随其后;而智能机器人领域由于公司数量较少,在融资总量上稍有落后,但其企业平均融资额度高达1400万美元,仅次于机器学习和图像识别领域。此外,从各领域公司创办时间而言,机器学习、图像识别以及智能机器人也是最为“年轻”的三个领域之一,产业内技术成熟度还不够高,未来几年将提供广阔的蓝海市场。
应用场景扩展方面,机器学习、图像识别、自然语言识别和智能机器人是应用范围较为广泛的几个领域。
机器学习技术当前已广泛应用于广告、媒体、消费业等,并且需求不断增加,未来还将快速渗入医疗、制造、金融、教育业,对众多传统行业形成巨大冲击。图像识别技术目前的应用领域很广并且需求非常大,具体包括安防监控系统、无人驾驶、商品消费、工业制造、医药、体育和娱乐业等等,并且在未来几年将大规模应用于智能机器人的开发中。自然语言识别未来可广泛应用于穿戴设备、智能家居、智能汽车等领域,此外在很多安全保密系统中,语音识别技术也发挥着重要的作用。但是,该技术目前在不同口音的处理、背景噪音、区分同音异形异义词方面仍然存在一些难以解决的困难。而随着智能机器人功能的逐渐完善,未来在农业、工业以及医疗、消费等服务行业都能代替人工完成多项任务,既能节省大量人力成本又能提高工作效率和质量。
综合以上分析,我们认为机器学习、图像识别和智能机器人是目前整个人工智能产业链中发展前景最好的三大领域。
Who:谁能脱颖而出?技术壁垒、跑对赛道、优先布局
人工智能是跨学科、跨行业的综合性学科,以大数据为基础、以核心技术为驱动,应用领域极其广阔,想象空间极大。在这样一个复杂度、精细度极高的产业内,什么样的企业能够脱颖而出呢?我们认为具备技术壁垒、跑对赛道、优先布局特征的企业最具发展前景。具体来看:
技术壁垒:巨头企业通过并购初创技术企业形成技术优势
国际互联网巨头争相收购人工智能技术开发公司抢夺核心技术。
技术是人工智能产业发展的必备要素,因此在加强自身研发投入的同时,各个互联网巨头公司纷纷收购有技术优势的初创型企业来快速获得技术、形成壁垒。
在过去的几年里,超过20家专注于开发人工智能技术的企业被蜂拥而至的大型互联网公司收购,谷歌、亚马逊、苹果、IBM、雅虎、Facebook、Intel等互联网行业巨头收购动作最为频繁。
谷歌作为人工智能领域的领头羊进行了5次至关重要的收购,涉及深度学习、推荐引擎、图片搜索等多个技术领域,值得一提的是,近期战胜韩国棋手李世石的AlphaGo是2014年谷歌花费4亿美元收购的英国初创公司DeepMind所创造的。而据彭博社报道,亚马逊于2015年秋季秘密收购了硅谷初创公司Orbeus,该团队专注于人脸识别技术,其核心产品ReKognition能够自动分类和辨别照片中的内容,目前的识别对象可以包括人脸、场景、陆标、物体等其他概念。Orbeus的照片软件PhotoTime不仅早于谷歌发行的基于人工智能的应用,其使用的图像识别算法也比Facebook先前收购的Face.com更加细致。
跑对赛道:选择重点领域进行突破,所选领域未来有爆发点
人工智能产业目前尚处于成长初期,应用领域非常广且又是技术密集型产业,任何一个领域的发展都需要投入大量的科学资金、科技人才和物力等等。
即便是资金技术雄厚的巨头企业也很难在人工智能产业链全部领域全面开花,这个时候很多公司往往会选择一个或者几个重点领域进行重点布局,因此,公司战略所选的领域未来是否具有爆发潜力就至关重要,也就是我们所说的“跑对赛道,脱颖而出”。
基于我们从产业资本投资方向,行业属性及发展路径等几个维度的比较分析,我们认为重点布局在
机器学习、图像识别、智能机器人
三大领域的公司最可能脱颖而出。
机器学习主要指的是人工智能领域应用中比较热门的深度学习,通过多层次的学习而得到对于原始数据的不同抽象层度的表示,进而提高分类和预测等任务的准确性。
深度学习可以应用于包括图像识别、自然语言处理、广告点击率预估乃至人工智能平台(如谷歌大脑)等在内的多个产品,并大幅度地提升这些产品的性能,各大研究机构和公司都投入了大量的资源进行相关的研究和开发。
纵观国际,谷歌可谓跑对机器学习领域赛道的最佳典范。
谷歌在机器学习领域的投入和研发水平远超其他对手,更是在被称为机器学习年的2015年取得了这个领域多项突破性的进展。
放眼国内,百度是目前国内唯一一家有望在机器学习领域与谷歌相媲美的公司。
百度2013年率先决定成立深度学习研究院,主要进行深度学习&机器学习、机器人、人机交互、图片识别等方面的研究。此后,百度继续加大在机器学习领域的研发投入,2014年5月在美国硅谷投资3亿美元成立百度美国研发中心,宣布任命人工智能泰斗,原Google Brain项目负责人吴恩达为百度公司的首席科学家,全面负责百度研究院。2014年,百度发布大数据计划,拟运用机器学习完成“开放云-数据工厂-百度大脑”的三层设计。
图像识别是指计算机从图像中识别出物体、场景和活动的能力。
传统的图像识别技术只能简单识别或查找静态图像,对视频分析、动态识别等则是有待于开发的潜力市场。不仅如此,图像识别还可以应用到特别广泛的社会领域,比如智能安保和互联网金融、社会福利保障、电子商务等领域。因此,
在图像识别领域跨越的一个小小步伐,就有可能带来可观的收益。
举例来说,一家初创公司Dextro正在开发能够进行视频识别的软件并凭借这个产品,成功进入了2015年在线视频企业Top15。
Dextro主要运用深度学习算法进行视频分析,它们正在开发的平台SSM(Sight,Sound&Motion)可以帮助用户寻找最有新闻价值的视频。Dextro目前提供两种服务,一种是在线视频搜索,即像文字搜索一样寻找、解释和分类视频,可以用于提升视频编辑剪辑工作效率和实现视频与广告的智能匹配;另一种是监控视频管理,能够快速锁定监控视频中的图像,可以用于家庭智能安保、城市空间布局分析和犯罪分子识别等领域。