Chief Business Officer: Florian Bressand
在加入Mistral AI之前,Florian于2005年加入麦肯锡,服务于零售和旅游行业的客户,任职12年。借助客户积累,他于2017年4月加入Mirakl,担任COO。Mirakl是市场上唯一一家可以让B2B和B2C机构规模化建立和发展企业电商平台的SaaS独角兽公司。Mirakl的客户包括许多零售巨头,如Best Buy、Office Depot、Hudson's Bay、Kroger、Express、Urban Outfitters、家乐福、迪卡侬等。同时Mirakl也开拓B2B业务,获得了空客、丰田、惠普等公司的订单。Florian在Mirakl主要负责三个团队:销售、客户成功和战略,见证了Mirakl从B轮到E轮的成长,成为法国的SaaS独角兽。2023年4月,Florian离开Mirakl,经过Board meber Jean的介绍加入Mistral AI。
Florian 之前在 Saas 公司的成功经验会对 Mistral 的 GTM 有很多帮助:
• Mirakl 的业务增速非常迅速,2022年已经保持了3年的40%以上增长。2023年的续订收入达到1.35亿美元。
• 在 Mirakl 的客户结构中,B2C企业依然占大多数,占整体业务的84%。
• Mirakl 不做小B生意,以中型企业和大型企业客户为主。
此外,在 Mistral 董事会和顾问席位上也有几位成功的创业者和公众人物。Alan 是法国最成功的保险公司之一,其 CEO Jean-Charles Samuelian 和 CTO Charles Gorintin 都是 Mistral 的创始顾问,同样还有 Cédric O,前法国数字事务国务秘书。他们的帮助都能为这个科学家为主导的公司进行保驾护航
1. 商业化路径:开源模型的付费客户是谁?
目前 Mistral AI 还没有开始商业化,我们认为未来 Mistral 最佳的 GTM 策略还是服务高价值用户,尤其是欧洲那些开放性、数据安全性和模型能力并重的大企业。其具体的商业化形式可能有三:
• 卖开源模型的定制化版本
在企业实际使用的时候,可能有各种数据 IP 上的顾虑和定制化的需求,Mistral 能够将其修改并卖给企业。
• 标准商业化 api
这一商业化路径与闭源厂商的产品形态接近,开源模型 API/平台目前确实还没有过成功的商业实践,目前这块业务收入最高的应该还是 MosaicML。
• 模型 inference 平台
为企业提供模型 serving、RAG、定制化服务等能力的平台。这一形式接近目前的 model inference infra,但 Mistral 对模型训练的细节,能做更彻底的优化。
这里最大的挑战还是开源模型的商业化:开源模型展现出了满足基本业务需求的能力,是应用层公司为自己、Infra 公司为客户降低成本的重要手段。Mistral 和 Llama 2 都开始有了一定的 adoption,但是还未出现围绕着开源模型好的商业模式, Stability、Mistral 并不能从每一次商业使用中获得收入。未来优秀的小模型可能会继续作为应用公司、工具公司,乃至公有云的生态合作伙伴,但不一定会有高价值的付费。
2. 服务价值差异点:轻量级模型部署难度小,服务价值不明晰
Mistral 有一个战略是开发轻量级模型,可以在边缘端为每个人提供 AI 助手。小模型的部署难度是远低于标准大模型的,可能是未来每个硬件必备的一部分,因此很难产生高客单价高价值的商业模式。Stability AI 就有遇到类似的困难,文生图模型的inference难度不大企业可以自行部署,同时还有很多专业 inference 公司以更低廉的价格提供类似的服务,使他们的营收难以快速 scale。
同时 OpenAI、Anthropic 等公司都有希望能够打造出优秀的小模型,只是他们目前的战略重心还在追求 AGI 上。比如 GPT 3.5 Turbo 其实就是基于之前的 GPT 3.5 和训练 GPT 4 的经验,重新进行训练和 scale down 得到的模型,其效果出色且成本很低。
3. 竞争格局:LLM 领军者和公有云厂商,欧洲市场是否能支撑起独角兽公司
后面将分析到欧洲市场可能有独立的 LLM 机会,但这一判断是存在变数的。欧美之间的文化相似度是最高的,彼此之间比较容易对齐。因此在美国能够发挥价值的大模型迁移到美国也不会有太大的阻碍,并不像其他地区可能还需要价值观的重新 alignment。
同时,各大云厂商在欧洲市场的渗透率已经很高了,很多前面提到的财富500强公司已经 adopt 了公有云。而且 Google Deepmind London 的人才有很大比例来自欧洲,欧洲市场的独立性是有可能被 tech giant 侵蚀的。最近微软也已经宣布了 serve Mistral 模型。
优势分析
1. 企业付费能力强
欧洲拥有大量的财富500强公司,这意味着企业有足够的财力投资于先进的技术解决方案。特别是在法国、德国、英国、瑞士和荷兰等国家,这些企业多集中在传统行业如汽车、石油和天然气、制药、电信、银行和保险等。
财富500强公司中有近四分之一来自欧洲,如果按国家拆分的话主要来自:
• France - 31
• Germany - 27
• United Kingdom - 22
• Switzerland - 14
• Netherlands - 10
2. 技术工程能力相对较弱
相较于美国等地的科技公司,欧洲的企业在技术工程方面相对较弱。这为LLM公司提供了进入市场并提供技术支持和服务的机会。
根据行业进行拆分,欧洲公司主要为传统公司,技术工程能力弱:
• Automobiles - Volkswagen, BMW, Mercedes-Benz, Stellantis
• Oil & Gas - Royal Dutch Shell, TotalEnergies, BP
• Pharmaceuticals - Roche, Novartis, GlaxoSmithKline
• Telecommunications - Deutsche Telekom, Orange, Vodafone
• Banks - HSBC, BNP Paribas, Credit Suisse
• Insurance - Allianz, AXA, Zurich Insurance
机遇点
Mistral AI 的策略是模型checkpoint的完全开放和Apache 2.0协议,以及针对企业端的定制化服务。这种策略非常适合欧洲市场,能够提供更符合当地法规和企业需求的产品。根据上半年 Mistral 泄露的战略memo,他们对最近一年有如下规划:
1. 他们将首先专注在训练最好的 LLM 上:打造可以击败 ChatGPT 3.5 、Bard 和 Claude 2 的模型,充分向合作伙伴验证自己的技术能力。其中一部分模型是开源的建立标准,另一部分是商业化供企业端进行使用的。
2. 下一步做 embedding model 和多模态模型来实现技术的差异化,发挥团队的优势技术能力。
3. 最后实现两个目前没有解决的需求,这两个会与合作伙伴一起进行推进:
• 训练能运行在 16GB 笔记本电脑的小模型,成为一个有用的人工智能助理;
• 训练可hot-pluggable extra-context 的模型,也就是将 RAG 和 LLM 结合在一起。
这一路线非常务实,也非常适合欧洲市场。因为总的来看,虽然欧洲市场在监管严格性、企业对技术开放度要求高等方面存在挑战,但其强大的企业付费能力和技术服务需求,为独立的LLM大模型公司提供了显著的机会。特别是像Mistral AI这样能够提供开放、透明且定制化的服务的公司,可能会在欧洲市场获得成功。重要的是需要在遵守当地法规的同时,灵活调整产品和服务以适应市场需求。
值得关注的是,欧洲这两年的创新创业生态有着一定的进步,今年的独角兽数量已经超越了中国市场: