2019年的诺贝尔化学奖授予了 John B. Goodenough, M. Stanley Whittingham, Akira Yoshino,以表彰他们在锂电池领域的贡献。
锂电池已经深入到我们日常生活的方方面面,这个领域能获奖也是众望所归。今天我们就来给大家简单聊聊锂电池里面的历史。
人类社会的发展离不开能源,几次工业革命的发展都依赖于储能技术的发展。今天,锂离子电池为全世界提供着电力,从智能手机到电动汽车,锂离子电池已经无处不在,它为日益机动的世界扫平了障碍。与其他商业化的可充放电池相比,锂离子电池由于其具有能量密度高、循环寿命长、工作温度范围宽和安全可靠等优点,成为了各国科学家努力研究的重要方向。
不同的电池技术在体积和重量能量密度方面的对比
锂离子电池是一种二次电池(可充电电池),主要由正极、负极、电解液、隔膜、外电路等部分组成。在电池内部,带电的原子,也被称为离子,沿着两个电极之间的路径运动,并产生电流。锂离子电池主要依靠锂离子在正极和负极之间移动来工作。在充电过程中,锂离子从正极材料中脱出,经过电解液传输至负极,电子由负极经外电路转移至正极;而在放电过程中,锂离子和电子的运动方向则与充电过程相反。在当前*常见的一种可反复充放电的锂离子电池中,其正极是钴酸锂材料,负极是碳材料。
正在充电的锂离子电池
1912年,锂金属电池*早由吉尔伯特·牛顿·路易士(Gilbert N. Lewis)提出并研究,但由于锂金属的化学性质非常活泼,使得锂金属的加工、保存和使用对环境要求非常高,使得锂电池长期没有得到应用。
锂离子电池的基本概念,始于1972年米歇尔·阿曼德(M. Armand)等提出的“摇椅式”电池(rocking chair battery)。在锂离子电池的研究中,正负极材料的研发,是锂离子电池发展的关键所在。
商业锂离子电池正负极材料的示意图、主要发明人、发明时间
通过3D打印来制备高性能锂金属微电池
过3D打印技术制作电池具有独特的优势,例如产品小型化、可自主成型和可控制宏微观结构等。然而,由于金属锂的打印比较困难,3D打印金属锂电池(LMBs)还没有研制成功。
美国西北大学的Cao博士团队首次通过使用纤维素纳米纤维(CNF)的3D打印技术制造出高性能的锂金属微电池(LMB),该纤维是地球上最丰富的生物聚合物之一,如图1。CNF水溶液具有天然独特的剪切稀化特性,是3D打印油墨的理想候选材料。首先,当CNF溶解在水中时,每个纤维素分子上丰富的羟基(每个重复单元6个)在单个纤维之间以及与水分子之间形成强氢键。这种强氢键造成了高保水率(高达98%),并赋予油墨独特的粘弹性性能;其次,由于CNF具有极高的负zeta电位(≈60mv),它可以作为表面活性剂帮助分散水溶液中的其他材料。由于这两个特性,CNF可以用作增粘剂,优化其他材料的印刷性能。并且纳米纤维素具有较高的杨氏模量,约为145-150GPa,这有利于在去除作为支架材料的水后保持结构的完整性。