虽然期待值高,但AI的商业应用尚在初期阶段,期望和实际行动尚有差距。4/5的高管赞同AI对于自己所在组织而言是战略机会,然而只有1/5将AI应用在一部分产品、服务或流程中,只有1/20将AI广泛应用于产品、服务或流程(参阅图6)。
应用的差距可能很大,特别是同一行业内。例如,平安保险公司雇用了约110位数据科学家,启动了约30个由CEO赞助的AI项目,在一定程度上支持其愿景“技术将会成为未来几年给公司带来收入增长的关键驱动力”,如公司首席创新官乔纳森·拉森(Jonathan Larsen)所说。然而其他一些大型保险公司的AI项目仅限于“试验聊天机器人”,这是某家西方保险公司的高管描述自己所在公司AI项目的原话。两者形成鲜明对比。
各个组织对AI的总体理解也显示出极大的差异。例如,16%的受访者强烈赞同“自己所在组织了解开发基于AI的产品及服务所需的开支”,强烈不同意这一点的比例与之相差无几(17%)。19%的受访者强烈赞同“自己所在组织了解训练算法所需要的数据”,16%强烈不赞同这一点。
将调查结果与有关AI理解和应用的问题结合在一起,我们将各组织根据AI能力分为了四类:先驱者(Pioneer)、研究者(Investigator)、试验者(Experimenter)、被动者(Passive)。
既然对AI的期待很高,许多组织将之视为机遇,那么一些组织不应用AI的原因何在?即使在一些长期应用新技术、管理数据的行业,应用AI可能也是困难重重。例如金融服务行业,瑞士银行(UBS)超高净值人士首席投资官西蒙·斯迈尔斯(Simon Smiles)说:“对于大型金融机构而言,在业务中更好地运用人工智能等技术和数据,为终端用户带来更好的客户体验,这种潜力是巨大的。问题在于这些传统大机构能否抓住机会。”要抓住机会,组织上下必须通力合作,克服许多AI项目带来的不可避免的难题,也就是史维学所说的“应用鸿沟”。
难题并不是技术局限,而是在商业方面。受访者总体认为,相比于技术能力限制,与之竞争的其他投资重点和商业可行性论证不清晰是阻碍企业应用人工智能更重要的原因。空客的埃文斯说出了这个重要的区别:“严格地讲,我们没有投资AI。我们没有投资自然语言处理,没有投资图像分析。我们一直在为某个业务问题投资。”空客采用AI,是因为AI解决了一个业务上的问题,投资AI是一种应对商业问题的有效方式。
UBS的斯迈尔斯提出,各组织面对的问题不尽相同。对于成熟公司和金融科技创业公司,他说:“要开发价值惊人的平台,对公司规模有要求。规模达到一定程度的公司往往被旧有商业模式和体系束缚,难以发展更好的模式。而没有这种束缚的公司却又缺乏客户和相应的数据,难以充分把握机会。”这一类问题造成了AI应用率的差异。
调查中各类组织反映的AI阻碍因素各不相同,且对AI应用情况有影响(参阅图7)。先驱者已经克服了有关理解的问题:这类公司有3/4找到了能够应用AI的实际业务场景,高管直接领导涉及整个组织的AI项目,它们最大的问题是如何高效地培养或寻找合适的AI人才,以及为AI争取投资。这些公司也更熟悉应用AI在安全方面的种种顾虑。与之相比,被动者尚未发现AI在商业上的用途,没有找到符合投资标准的实际业务场景,领导不参与,技术是难题。许多公司甚至尚未意识到寻找和任命AI人才的困难程度。
我们的调查还揭示了各类公司在理解方面的细微差别。