专栏名称: 电子工程专辑
电子工程专辑是中国创建较早的电子工程类网站,是《电子工程专辑》杂志的有力补充。专注为工程师提供最新技术及实用方法的专业平台。包括:16个热门技术栏目在内的,新品信息和新闻报道、专题报道以及厂商应用报告、行业重要新闻的信息速递。
目录
相关文章推荐
什么值得买  ·  冬天吃了嘎嘎香!这几款羊排、牛肉好吃不踩雷 ·  3 天前  
三观大厦  ·  [方法论] 网购时发现的商家的千层套路 ·  3 天前  
三观大厦  ·  [方法论] 网购时发现的商家的千层套路 ·  3 天前  
每天发现一家店  ·  抱紧这 11 件暖暖小物,第 1 个好漂亮! ·  5 天前  
每天发现一家店  ·  12 个不会融化的雪花! ·  4 天前  
物种日历  ·  200块,实现大金镯子自由,这可能吗? ·  4 天前  
51好读  ›  专栏  ›  电子工程专辑

信号的IQ分解和信号差分传输

电子工程专辑  · 公众号  ·  · 2017-06-20 12:02

正文

I/Q 信号
I/Q 信号是调制输入端为了提高频带利用率而设计的相位正交得两路信号。

在信号分析中,我们常把信号进行矢量分解,也就是将信号分解为频率相同、峰值幅度相同但相位相差90 的两个分量。用矢量表述信号,可以完整地描述信号的幅度、频率和相位。矢量作为一个图解工具,矢量是一个直角坐标系中的旋转的箭头。箭头的长度代表信号的峰值幅度。逆时针旋转方向为正方向。箭头与横轴正半轴的夹角为相位。信号周期对应于箭头旋转一周的时间。信号每秒钟完成旋转的次数对应于信号频率。信号矢量在纵轴上的投影长度等于信号的峰值幅度乘以相位正弦值,因此,如果信号是一个正弦波,该投影就对应于信号的瞬时幅度。通常采用一个正弦信号(Asinwt)和一个余弦信号(Acoswt)描述这两个分量,其中余弦分量被称为同相分量,即I 分量;正弦分量被称为正交分量,即Q 分量。

对信号通常用复数表示,这样它可以分解为实部与虚部。 x(t)= a(t)+jb(t), 即为I,Q 信号。

I/Q 是信号分解,I 或Q 不能单独代表信号全部信息 带一半信号。
I/Q 主要用于无线通信的I/Q 调制电路,即所谓的"万能调制器",可以实现多种调制.当然差分信号也可以用在调制上,例如BPSK 调制.另外所谓的基带数字信号与基带模拟信号是有区别的,DA 之前是基带数字信号,DA 之后是基带模拟信号.

例子: QPSK
设输入的二进制数字信息序列为1001001110...,则将它们分为10,01,00,1 1,10,...即经过串并转换后得到I 路信号:10011...,Q 路信号01010...然后I 路与coswt 相乘,Q 路与sinwt 相乘,最后相加得到QPSK 信号。

一般IQ 线都会走差分对形式. 下图为某电路中采用的形式。


差分信号
差分信号是指在放大器输入端为了避免共模干扰而设计的相位相反的两路信号。
差分信号是信号形式,一路信号含有全部信息;

差分可以数字,也可以模拟

差分信号用于PCB 板内信号的传输,差分信号要求幅度相等而相位相反,主要是为了消除共模干扰,差分信号一般是基带模拟信号,也可以是基带的数字信号,如高速数字信号.要求传输差分信号的两根线藕合得很紧,以得到良好的EMI 性能及抗干扰能力,另外差分信号还可以达到精确的时序定位.

差分信号好处:
第一个是,因为你在控制'基准'电压,所以能够很容易地识别小信号。
在一个地做基准,单端信号方案的系统里,测量信号的精确值依赖系统内'地'的一致性。信号源和信号接收器距离越远,他们局部地的电压值之间有差异的可能性就越大。从差分信号恢复的信号值在很大程度上与'地'的精确值无关,而在某一范围内。

第二个是,它对外部电磁干扰(EMI)是高度免疫的。
一个干扰源几乎相同程度地影响差分信号对的每一端。既然电压差异决定信号值,这样将忽视在两个导体上出现的任何同样干扰。除了对干扰不大灵敏外,差分信号比单端信号生成的 EMI 还要少。

第三个是,在一个单电源系统,能够从容精确地处理'双极'信号。
为了处理单端,单电源系统的双极信号,我们必须在地和电源干线之间某任意电压处(通常是中点)建立一个虚地。用高于虚地的电压来表示正极信号,低于虚地的电压来表示负极信号。接下来,必须把虚地正确地分布到整个系统里。
而对于差分信号,不需要这样一个虚地,这就使我们处理和传播双极信号有一个高真度,而无须依赖虚地的稳定性。

推荐阅读

1扒一扒芯片界那些破历史

2、说说采购员变成了业务员的故事

3、“矿工”搬空了十几个国家的货架,A卡、N卡卖光、缺货一卡难求

4、为什么不能打断正在工作的程序员?

5、巧妇难为无米之炊,你缺的米都在这里...

6、PCB为什么要进行清洗?

7、美国工程师拆解了三个“中国制造”,结果糟透了

8、整天呆在实验室,你错过了多少女神?

9、一个FPGA大神的青春爱情故事

本文转载自网络,如涉版权请联系我们删除

看完本文有收获?请分享给更多人

回复关键词有干货:电路设计丨电容丨三极管丨PCB丨接地‧‧‧‧‧‧

长按二维码识别关注


阅读原文可一键关注+历史信息