投资建议:ASIC针对特定场景设计,有配套的通信互联和软件生态,虽然目前单颗ASIC算力相比最先进的GPU仍有差距,但整个ASIC集群的算力利用效率可能会优于可比的GPU,同时还具备明显的价格、功耗优势,有望更广泛地应用于AI推理与训练。我们看好ASIC的大规模应用带来云厂商ROI提升,同时也建议关注定制芯片产业链相关标的。
AI ASIC具备功耗、成本优势,目前仍处于发展初期,市场规模有望高速增长。目前ASIC在AI加速计算芯片市场占有率较低,预计增速快于通用加速芯片。据Marvell预测, 2023年,定制芯片仅占数据中心加速计算芯片的16%,其规模约66亿美元,预计2028年数据中心定制加速计算芯片规模有望超400亿美元。
ASIC单卡算力与GPU仍有差距,但单卡性价比和集群算力效率优秀。ASIC中算力相对较高的谷歌TPU v6和微软Maia 100算力约为H100非稀疏算力的90%、80%,同时ASIC的单价显著低于GPU,故而在推理场景呈现更高的性价比;ASIC的芯片互联以PCIe协议为主,处于追赶状态,NVLink协议更具优势;在服务器互联方面,ASIC主要采用以太网,正追平英伟达的IB网络,目前H100集群可以做到10万卡规模,ASIC中谷歌TPU相对更为领先,TPU v5p单个Pod可达8960颗芯片,借助软件能力,TPUv5e可拓展至5万卡集群,且保持线性加速。由于ASIC专为特定场景设计,且云厂商对软件生态掌握程度也较高,ASIC集群的算力利用率实际可能高于GPU(如TPU、MTIA等)。
软件生态也是影响AI计算能力的重要因素,当前CUDA生态占据主导,ASIC软件生态有望逐步完善。云厂商普遍具备较强的研发能力,均为AI ASIC研发了配套的全栈软件生态,开发了一系列的编译器、底层中间件等,提升ASIC在特定场景下的计算效率。此外,一些商用芯片厂商也推出了开源平台,如ROCm和oneAPI,未来ASIC的软件生态将会愈发成熟、开放。
风险提示:AI算法技术风险、生态系统建设不及预期、芯片研发不及预期、AI产业发展不及预期。
文章来源
本文摘自:2024年12月24日发布的《BIS制裁加速半导体国产化,先进制程重要性日益提升》
舒 迪,资格证书编号:S0880521070002
李 奇,资格证书编号:S0880523060001钟吉芸,资格证书编号:S0880124060021重要提醒
本订阅号所载内容仅面向国泰君安证券研究服务签约客户。因本资料暂时无法设置访问限制,根据《证券期货投资者适当性管理办法》的要求,若您并非国泰君安证券研究服务签约客户,为保证服务质量、控制投资风险,还请取消关注,请勿订阅、接收或使用本订阅号中的任何信息。我们对由此给您造成的不便表示诚挚歉意,非常感谢您的理解与配合!如有任何疑问,敬请按照文末联系方式与我们联系。
法律声明
本公众订阅号(微信号: GTJARESEARCH )为国泰君安证券股份有限公司(以下简称“国泰君安证券”) 研究所依法设立、独立运营的唯一官方订阅号。其他机构或个人在微信平台上以国泰君安研究所名义注册的,或含有“国泰君安研究",或含有与国泰君安证券研究所品牌名称相关信息的其他订阅号均不是国泰君安证券研究所官方订阅号。
本订阅号不是国泰君安证券研究报告发布平台,本订阅号所载内容均来自于国泰君安证券研究所已正式发布的研究报告,如需了解详细的证券研究信息,请具体参见国泰君安证券研究所发布的完整报告。
在任何情况下,本订阅号的内容不构成对任何人的投资建议,国泰君安证券也不对任何人因使用本订阅号所载任何内容所引致的任何损失负任何责任。
本订阅号所载内容版权仅为国泰君安证券所有,国泰君安证券对本订阅号保留一切法律权利。订阅人对本订阅号发布的所有内容(包括文字、影像等)进行复制、转载的,需注明出处为“国泰君安研究”, 且不得对本订阅号所载内容进行任何有悖原意的引用、删节和修改。