Genentech(基因泰克)去年上线了一档评价很高的电台节目,叫做Two Scientists Walk into a Bar(两个科学家走进一家酒吧),该电台的节目内容涉及基础生物学、化学、肿瘤免疫药物开发、临床实验设计等多个领域,是一档少见的高品质科普节目。
电台的主播是基因泰克肿瘤免疫产品开发部的首席科学家Jane Grogan,而节目的录制地点是在一家酒吧。Grogan会邀请各个领域的科学家来讨论炎症、疼痛、癌症等大众关注度比较高的话题。Grogan有些奇怪的澳大利亚口音,加上酒吧里觥筹交错的背景音,非常适合我这种失眠症患者在睡不着的时候用来催眠。可能很多人好奇Grogan为何会把这档节目的录制地点选在一家酒吧,其实这是为了纪念基因泰克的两位创始人
Boyer
与
Swanson
的相遇。
I
重组DNA技术
1968年冬天,Paul Berg结束了11个月的长假回到斯坦福大学。Berg是一名生物化学家,他在前半生的职业生涯里一直专注于蛋白质合成研究,但在索尔克研究所进行学术休假(sabbatical)的那11个月,他开始重新思考今后的研究方向。在这段时间里,Berg与索尔克研究所的病毒学家Renato Dulbecco一同进行动物病毒研究,他花了很长时间思考基因和病毒,思考遗传信息是如何传递的。
病毒的结构比较简单,通常只包含携带遗传信息的核酸以及包裹核酸的衣壳。病毒进入宿主细胞后会脱去外壳使遗传物质进入宿主细胞,并使用宿主细胞作为基因复制和表达的工厂来制造新的外壳和遗传物质,以此产生数以百万计的新病毒。而Berg却对其中的一种病毒非常感兴趣: 猴病毒40 (SV40)。
SV40的基因组大小只有人类基因组的六十万分之一。人类大约有2万个基因,SV40只有7个基因。与其他
很多
病毒不同的是,SV40可以与很多宿主细胞和平相处。有些病毒在感染宿主细胞之后可以复制自身产生数百万计的新病毒,并最终导致宿主细胞的死亡,而SV40可以将自身DNA插入宿主细胞的基因组 (虽然这并不是SV40独有的特征),如果不存在特定的激活信号,这些插入宿主细胞基因组的基因会一直处于休眠状态。
Berg由此认为SV40是传递人递遗传信息的理想载体,他觉得如果能够将外源性基因装载入SV40基因组,那么这个外源性基因将有可能随着病毒基因组一同被插入到人细胞的基因组之中,从而修改宿主细胞的遗传信息。毫无疑问,如果他的设想能够实现的话,将会开启遗传学领域的新篇章。
Berg
明白实现这一目标并非易事,他面对的第一个技术障碍便是如何将外源基因插入病毒的基因组,也就是说他必须找到能够人工构建病毒基因与外源基因嵌合体的方法。
与人类细胞内DNA的线性结构不同,SV40的DNA为环状结构。病毒在入侵进入宿主细胞之后,环状的DNA会打开形成线性结构,在环状DNA被打开之后才能将病毒DNA插入到宿主细胞基因组之中。Berg认为,如果要向SV40的DNA中插入外源基因,需要先打开SV40的环状DNA,之后再将DNA片段的末端连接到一起重新形成环状DNA,接下来的工作则交给病毒自己来完成,病毒将携带外源基因感染宿主细胞,并将该外源DNA片段插入到宿主细胞的基因组中。
其实Berg并不是唯一一个思考过如何打开病毒环状DNA并插入外源基因的科学家。1969年,同样是在斯坦福大学,另一课题组的研究生Peter Lobban曾写过一篇研究生中期考核研究计划,他提议使用类似的基因操作来修改另一种病毒的遗传信息。
Lobban的本科在麻省理工学院(MIT)就读,而且受MIT的影响,他看起来更像是一名工程师。Lobban在研究计划中直白地写到,细胞中的基因与建筑中使用的钢梁并没有什么差别,同样可以被改造以适应人的各种需求,但最重要的是如何找到改造基因的工具。那时Lobban已经在导师Dale Kaiser的指导下开始了实验研究,尝试使用生物化学实验室的常用酶将基因从一个DNA分子转移到另一个DNA分子上。
实际上Berg和Lobban都已经意识到不应该把SV40看做是一个病毒,而是应该把它当做化合物来处理:他们需要做的是通过一系列的生化反应将基因插入到SV40的基因组中。但是Berg知道他首先需要找到一个能够剪切环状DNA的酶,其次是得到另一种酶将外源DNA与SV40的DNA相连。
但是去哪里寻找这些能够剪切和连接DNA的酶呢?或许从细菌中寻找是一个比较明智的选择。从上世纪60年代开始,科研人员就已经开始尝试从细菌中纯化出能够在体外对游离DNA进行连接的酶。理论上来讲,任何细胞内都应该存在这种类型的酶,细胞复制过程(Okazaki片段连接)以及DNA损伤的修复过程都需要这种酶的参与。
DNA在损伤之后可能会产生断裂,而在修复的过程中细胞需要特定的酶将断裂的DNA片段重新连接(DNA损伤修复过程也是一些抗肿瘤药物的作用靶标,比如PARP抑制剂,见:
新药研发有多难?看PARP抑制剂四十年开发沉浮史
)。连接酶 (ligase)就是参与上述过程的一种酶,它能够将DNA骨架断裂形成的两个片段重新连接,从而恢复DNA双螺旋结构的完整性。
但是DNA剪切酶却不太容易找到。几乎所有的细胞都存在DNA连接酶的需求,但是一般而言细胞内并不需要剪切酶来剪切DNA。不过有一些生物的细胞内却存在这样的酶,在营养物质匮乏的恶劣环境中生长的细菌和病毒,由于相互之间的竞争异常激烈,使细菌进化出一套能够剪切入侵病毒DNA的酶,作为自身防御的武器以抵抗病毒的入侵(其实这也是部分细菌免疫功能的基础,另一种细菌的适应性免疫是CRISPR系统,这部分内容可以参考笔者关于CRISPR的科普文章,见:
深度长文:为什么CRISPR必须拿诺奖?(上)
)。
这些细菌可以利用DNA剪切酶来剪切入侵病毒的DNA,这种酶被称为限制性内切酶 (限制性是指他们能够识别DNA的特定序列,只在特定位点剪切DNA双螺旋,而这种限制性至关重要,如果无法实现特异性剪切的话,这类酶可能会影响自身DNA,从而产生DNA损伤进而诱导细胞凋亡)。
以上这两种酶正是Berg实验的基础。Berg非常清楚这项技术的应用价值:基因可以通过相互连接进行重组,这些基因可以被修改,他也可以引入突变的基因,可以使基因在不同的物种之间转移;一个青蛙的基因可以被插入到病毒基因组中,之后再被引入到人的基因组之中。而人的基因也可以以类似的方式被引入到细菌的基因组中。如果这项技术足够成熟的话,人们就有可能非常自由地操控遗传物质。虽然重组DNA技术所使用的实验操作、构建重组DNA所使用的酶以及各种试剂均不是全新的,但是这项技术的创新之处在于DNA的重组,将DNA进行剪切和重新连接。
1970年冬天,Berg和他所在实验室的博士后David Jackson开始了第一次尝试:剪切和连接两个DNA片段。他们当时的实验过程非常繁琐,Berg曾把这个实验形容成生物化学家的噩梦。他们首先需要纯化DNA,将DNA与酶混合,之后进行低温柱层析纯化,而且他们需要不断地重复以上操作以优化生化反应条件。问题在于,他们使用的剪切酶并不高效,产率非常低。
尽管存在技术上的种种限制,Berg和Jackson最终还是成功将SV40的整个基因组与λ噬菌体的一个DNA片段以及来源于大肠杆菌的三个基因进行了连接。SV40和λ噬菌体都是病毒,但它们之间存在着巨大的差异,大肠杆菌与SV40相比则是完全不同的生物。Berg和Jackson成功地将这些来源于不同生物的DNA组合到了一起。Berg决定将这个杂合的DNA称为重组DNA。
II
克服重重困难
在这之后Berg的实验室来了一名新的研究生Janet Mertz。Mertz算得上难得一见的天才,与Lobban一样在MIT就读本科,获得了工程和生物学两个专业领域的学位。Mertz之所以选择加入Berg实验室是由于她对Jackson的重组DNA实验感到非常好奇。
左: Paul Berg 右: Janet Mertz
不过Mertz一直在思考一个问题,如果颠倒一下Jackson的实验目的会产生什么样的结果?Jackson的实验操作是将大肠杆菌的遗传物质插入到SV40的基因组中,如果将SV40的基因片段插入大肠杆菌的基因组中呢?
事实证明,将病毒的基因插入到大肠杆菌的基因组会产生一个巨大的技术优势。大肠杆菌携带一种被称为质粒的小型DNA,与SV40基因组相同,质粒的结构同样为环状,能够在细菌内复制。Mertz意识到,如果将SV40的基因插入到大肠杆菌的质粒中,那么她将有可能将大肠杆菌转变为外源基因复制的工厂。随着大肠杆菌的增殖,大肠杆菌胞内的质粒也会随之扩增,从而产生大量的外源DNA克隆。
1972年6月,Mertz离开斯坦福前往纽约的冷泉港参加动物细胞和病毒培训课程,这项课程要求学生针对自己未来的研究计划做简单报告。在报告中Mertz解释了她的研究计划:构建SV40和大肠杆菌DNA的杂合体,并使其能够随着大肠杆菌的增殖不断扩增。研究生的研究课题一般不会引起专家们的兴趣,但当Mertz结束报告的时候,大家开始意识到这不是一场简单的学术报告,先是一段长时间的沉默,紧接着导师和学生们的问题如潮水般涌来——你有没有想过构建DNA杂合体的风险?这样做会不会对人类产生危害?有没有考虑过该项技术带来的伦理问题?
在听完Mertz的报告之后,病毒学家Robert Pollack立即与Berg通话,跟他讨论重组DNA的技术风险。其实Berg和Mertz的实验确实存在一个极为重要的风险因素:SV40能够诱导仓鼠细胞突变形成肿瘤。 虽然截止目前仍然没有可靠证据表明SV40可能诱发人类细胞癌变,但在上世纪70年代,科学家们并不清楚该病毒的风险。这确实是一个值得慎重考虑的问题,笔者在之前的基因疗法的文章中详细介绍过这一风险,由于某些类型病毒的基因组插入位点比较特殊,会激活原癌基因诱发病人产生白血病(见:
基因疗法的三十年风雨上市之路
)。
除此之外,由于大肠杆菌能够在人类的肠道生存,如果Mertz和Berg真的成功构建了携带SV40外源基因的大肠杆菌杂合DNA,如果SV40真的如科学家所担心的那样能够诱发人细胞癌变,那么这种携带重组DNA的大肠杆菌是不是真的会诱发人细胞癌变,引发一场灾难呢?
此后的几周时间,Berg开始重新思考该项技术的风险。但他仍然觉得Pollack的担心是多余的。这项实验只是在相对封闭的实验室进行,当时也没有证据表明SV40能够诱发人类细胞癌变。实际上科研人员在实验室工作的过程中也经常被SV40病毒感染,但从没有报道过该病毒引发癌症的案例报道。为了应对外界的质疑,Berg甚至提出喝下他培养的SV40病毒以证明该病毒不存在致癌风险。
尽管Berg相信SV40的安全性并不存在问题,他也不得不小心应对外界的质疑。他咨询了一些权威肿瘤生物学家和微生物学家的意见,让他们对风险进行评估。Dulbecco也对SV40充满信心,但是科学家真的能够准确预测一项技术的未知风险吗?Berg十分清楚,对于任何一位科学家而言,科研过程中的判断失误以及实验结果预测失败是十分平常的事情。但这一次与以往的科学研究不同,如果他关于SV40危害性的预测错误,那么该项技术所产生的灾难性后果必将是他无法承受的。
既然无法完全确定风险,Berg决定采取折中的办法,只对游离DNA进行操作,不将杂合DNA引入活细胞之中,以此避免诱导细胞癌变的风险。而此时的Mertz却给了Berg一个很大的惊喜,她的实验迎来了一个重大突破。此前Berg和Jackson的剪切和连接DNA需要6步操作,极为繁琐。但Mertz发现了一条捷径——使用EcoRI能够将剪切和连接DNA的步骤减少为两步,从而使该实验变得异常高效。这种酶是加州大学旧金山分校(UCSF)的微生物学家
Herb Boyer
提供的。
Boyer于1936年出生于宾夕法尼亚,从小便对生物学情有独钟,沃森和克里克也是他青年时期的偶像。1966年Boyer以助理教授身份加入了UCSF,此后便一直专注于纯化DNA剪切酶。
1972年11月,Berg还在艰难权衡病毒-细菌杂合体的风险,此时的Boyer已前往夏威夷参加当年的微生物学会议。在结束上午漫长的会议报告之后,Boyer跑到了夏威夷的海滩享受甜美的午后时光。也是在那天傍晚,Boyer遇见了斯坦福大学的Stanley Cohen。
Cohen是质粒领域的专家,此前Boyer就知道这个人,也读过Cohen的文章,但从没有当面见过他。晚餐结束之后,Boyer、Cohen以及另一位微生物学家Stan Falkow漫步于夏威夷的威基基海滩,讨论着质粒以及嵌合DNA。Boyer和Cohen都知道Berg的重组DNA研究,Cohen也知道Berg实验室的研究生Mertz正在斯坦福大学的微生物实验室轮转,学习将嵌合DNA转移到大肠杆菌胞内的技术。
他们的讨论转向了Cohen的工作,Cohen已经成功分离出一些大肠杆菌质粒,而且他已经能够非常高效地纯化其中某些类型的质粒,能够方便地使质粒在大肠杆菌种系之间转移,而且他发现其中的一些质粒携带某些抗生素(例如四环素和青霉素) 的抗性基因。
如果将抗生素抗性基因从质粒中剪切下来,转移到另一质粒上会怎样呢?是不是能够使这些携带抗性基因质粒的大肠杆菌获得抗生素抗性,从而能够在抗生素的环境中存活,而不携带该质粒的大肠杆菌则被抗生素杀死?
这一灵光乍现的想法犹如暗夜中的霓虹灯,照亮了暗夜中的海滩。另外两人也意识到了这一想法的价值,因为在Berg和Jackson的实验过程中并没有找到合适的办法鉴别哪些细菌或者病毒获得了外源性的DNA。而Cohen的那些携带抗生素抗性的质粒却能够高效的鉴别重组的DNA,因为只有获得外源DNA (抗生素抗性基因) 的大肠杆菌才能够在具有抗生素的环境中生存,以此便能够验证是否成功构建了重组DNA。
Cohen担心的是,Berg和Jackson的实验中有另一个很严重的问题——构建嵌合DNA的效率太低。如果构建杂合DNA的成功率只有百万分之一的话,即使后期有再好的筛选系统也很难将成功构建的重组DNA筛选出来。然而Boyer的EcoRI很好的解决了这一问题,Mertz已经成功优化了DNA杂合体的构建过程。
之后是漫长的沉默,但他们的思绪却没有停止。Boyer已经能够高效的纯化用于构建杂合DNA的限制性内切酶,Cohen已经能够分离出合适的质粒。构建重组DNA的实验看起来已经非常简单了,似乎只要一个下午的时间就能够完成实验:将被EcoRI剪切的质粒DNA重新连接之后,可能会有一部分会质粒能够形成重组质粒DNA分子,之后利用抗生素抗性则能够筛选成功获得外源基因的大肠杆菌,随着大肠杆菌的增殖外源基因也会随之扩增,从而不断克隆重组DNA。Cohen小声说道:也就是说 . . . . . . 。还没等他说完Boyer便说道:对,这应该是可行的。
其实Cohen和Boyer的实验还有另一个非常重要优势:该实验的生物危害性争议更小。与Berg和Mertz的病毒-细菌杂合实验不同,Cohen和Boyer的杂合DNA只包含细菌的基因,因此Cohen和Boyer认为至少理论上来讲他们的实验生物危害更小。
左: Stanley Cohen; 右: Herbert Boyer
1972年冬天以及1973年的春天,Boyer和Cohen一直在忙碌地进行构造DNA杂合体的实验。此时的Berg和Mertz虽然已经知道同一学校的Cohen在进行重组DNA的研究,但他们依然没有进行将嵌合DNA导入活细胞的实验。
1973年2月,Boyer和Cohen已经开始将嵌合DNA导入细胞。
他们使用限制性内切酶对两种细菌质粒进行剪切,并将特定遗传信息从一种质粒转移到另一质粒上,之后使用连接酶将DNA片段完全连接形成嵌合体。该嵌合体在导入细菌细胞之后对细菌进行培养,细菌在培养过夜之后胞内的外源基因会随着细菌的增殖不断被复制。他们的实验成功了,一项足以改变世界的新技术也就此诞生。
III
走进一家酒吧
一开始的时候,重组DNA技术只局限于学术机构的实验室,只有生物化学家们才会关注这项技术,但是不久之后便引起了媒体的关注。1974年5月,旧金山纪事报对Cohen进行了专访,并且在文章中重点介绍了重组DNA技术的价值,文章中说基因工程细菌未来将可能成为生物工厂,用来生产药物和小分子化合物。很快纽约时报等其他媒体开始跟进报道基因克隆技术。
斯坦福大学专利事务办公室的Niels Reimers从报纸上读到了Cohen和Boyer的报道后立即被这项研究的巨大潜力吸引。Reimers主动找到了Cohen和Boyer,让他们联合申请关于基因克隆的技术专利(斯坦福大学和UCSF也持有专利权)。Cohen和Boyer对Reimers的举动都感到很惊讶,因为他们从来没想过重组DNA技术能够申请专利,也没有想到这项技术可能具有极大的商业价值。
1974年冬天,虽然Cohen和Boyer仍然很怀疑重组DNA技术申请专利的可能性,但还是在Reimers的帮助下提交了专利申请书。两人申请专利的消息很快传到了其他科学家的耳朵里。 Berg对此感到非常气愤,觉得Cohen和Boyer专利中的权利要求太荒唐,因为该专利的权利要求中声明他们拥有使用这项技术克隆所有DNA的商业所有权。Berg觉得他们申请专利的行为简直可笑,这项由公共经费支持而诞生的技术,怎么可以通过专利申请使利益私有化?或许对于当时的很多科学家而言,这样的行为确实让他们很难理解。
1975年秋天,专利申请的事务尚未处理完毕,Cohen和Boyer在科学的道路上却开始分道扬镳。他们之间的合作一直非常愉快,5年时间内他们合作发表了11篇重要论文。但是随着时间的推移,他们的兴趣却越来越不同。Cohen此后前往加州的一家生物公司Cetus担任顾问(Cetus应该是第一家生物工程为专业背景的公司,但一般认为基因泰克才是历史上第一家生物技术公司),而Boyer则回到了UCSF的实验室继续专注于重组DNA的实验研究。