专栏名称: AEii国际应用能源
发布应用能源领域资讯,介绍国际应用能源创新研究院工作,推广应用能源优秀项目,增进应用能源领域合作
目录
相关文章推荐
51好读  ›  专栏  ›  AEii国际应用能源

【Applied Energy最新原创论文】面向大型复杂空调系统高维传感器故障检测的热力学定律嵌入式深度学习方法

AEii国际应用能源  · 公众号  ·  · 2023-09-23 21:03

正文

请到「今天看啥」查看全文


原文信息:

A thermodynamic-law-integrated deep learning method for high-dimensional sensor fault detection in diverse complex HVAC systems

原文链接:

https://www.sciencedirect.com/science/article/pii/S0306261923011947

Highlights

(1)本文提出了一种全新可靠的高维传感器故障检测方法。

(2)该方法利用损失函数在深度学习中嵌入热力学定律。

(3)嵌入式热力学定律能有效消除故障数据在神经网络中的负面传播影响。

(4)该方法可有效提升复杂多故障情况下的检测准确性与可靠性。

Research gap

大型复杂中央空调系统中所配备的传感器日益增多,其健康运行是系统能效及室内热舒适的基本保障。传统故障检测方法难以在大量传感器构成的高维数据中高效、精确识别故障;同时新兴深度学习方法虽善于处理高维数据,但因其纯数据驱动本质,可靠性难以保障。因此,本研究提出了一种热力学定律嵌入式深度学习方法,有效提升检测可靠性,解决复杂空调系统中高维传感器故障检测难题。

在大型中央空调系统中往往安装了大量传感器,用于保障空调系统的高效运行及室内热舒适。如何在大量传感器所产生的高维数据中,特别是复杂多故障并存的情况下,高效、精确、可靠地检测传感器故障,是一个具有挑战性的问题。在本研究中,我们创新性地提出了一种热力学定律(包括质量守恒与能量守恒)嵌入式深度学习方法,用以解决此问题。该方法利用深度学习的智能性、灵活性与高效性,有效处理高维数据所带来复杂性。

更重要的是,我们的嵌入方案使得深度学习模型以显性方式学习系统运行中的热力学规律,有效减少或消除单纯深度学习方法中常观测到的不合理结果(如违反质量守恒或能量守恒等结果),进而提升高维传感器故障检测的准确性和可靠性。

在所讨论案例中,与传统的单一深度学习方法相比,嵌入热力学定律的深度学习方法在复杂的多故障场景下,故障检测率提高了27.2%,误报率显著降低了77.4%。进一步分析表明,当多个传感器发生故障时,热力学定律的嵌入可以大大减轻在深度神经网络内部由故障数据传播所造成的负面影响。本文提供了一种有效且可靠的高维传感器故障检测方案,可确保大型复杂空调系统中数量与日俱增的传感器健康运行。


更多关于“Fault detection ”的研究请见:https://www.sciencedirect.com/search?pub=Applied%20Energy&cid=271429&qs=Fault%20detection

Abstr act

In building Heating, Ventilation and Air Conditioning (HVAC) systems, sensor healthy operation is the foundation of the adopted control strategies to improve building energy efficiency and indoor thermal comfort. For large and complex HVAC systems where a large number of sensors are often installed, associated sensor fault detection is highly challenging due to the high dimensionality of the sensor data and complex multiple-fault scenarios. To address this challenging issue, this study proposes a novel method in which the thermodynamic laws (i.e., mass balance and energy conservation) are integrated with deep learning. By making use of the intelligence, flexibility, and efficiency of deep learning, the proposed method can easily handle high-dimensional sensor measurements. More importantly, the integration enables the thermodynamic laws (which govern the mass and heat transfer processes in HVAC systems) to be explicitly learned and thus can effectively reduce/eliminate unreasonable results (e.g., violations of mass balance or energy conservation) frequently observed from sole deep learning methods due to their pure data-driven nature. Reduction/elimination of such unreasonable results can improve associated high-dimensional sensor fault detection performance in terms of accuracy and reliability. In the case study, compared with a conventional sole deep learning method, the proposed method increased the fault detection rate by 27.2%, and significantly reduced the false alarm rate by 77.4% in the complex multi-fault scenarios. Associated analysis demonstrated that the integration of thermodynamic laws can substantially alleviate the adverse intercorrelation impacts induced by faulty measurements inside the deep neural network when multiple sensor faults occurred. The proposed method provides an effective and reliable means to ensure the sensor healthy operation in large and complex HVAC systems in particular as increasingly more sensors are installed nowadays.


Keywords:

HVAC   暖通空调

Fault detection   故障检测

Sensor fault   传感器故障

Physics-informed deep learning   基于物理信息的深度学习

Data-driven   数据驱动

Graphics

图1 . 本文所提出热力学定律嵌入式深度学习方法总览

图2. 自编码器(Autoendocer)深度神经网络用于传感器故障检测


(a)

(b)

图3. 复杂多故障情况下,热力学定律嵌入式深度学习方法相较于单一深度学习方法实现了更高的故障检测率与更低的误报率


(a)


(b)

图4. 当多个传感器发生偏差故障时,使用单一深度学习方法生成的传感器#6的残差低于故障检测阈值,这是由传感器#22的故障数据及其在神经网络中的负面传播造成的;本文提出的热力学定律嵌入式深度学习方法克服了相关负面影响,成功检测到传感器#6与#22的故障


(a)


(b)

图5. 热力学定律嵌入式深度学习方法(b)显著抑制了多故障工况下、常见于单一深度学习方法(a)中由故障数据造成的传播性负面影响及其引起的残差增长,显著降低了误报率


(a)

(b)

(c)

图6. 进一步分析表明,在深度学习神经网络训练与测试中,随着热力学定律在损失函数中权重增加,减小热力学定律违反程度(图a)与减小自编码器的误差(图b)是存在取舍的;但更严格符合热力学定律的神经网络(既较小的违反程度)并不一定能取得更好的故障检测效果,需慎重考虑热力学定律的嵌入方式

团队介绍

本研究由香港城市大学、武汉科技大学、西华大学、与澳大利亚伍仑贡大学的研究人员共同完成。

作者介绍

通信作者简介:

孙勇军,博士,香港城市大学副教授,现从事高密度城市可再生能源智能应用、建筑节能、机器学习、数据中心浸没式冷却、零碳建筑等领域的研究。在Applied Energy、Energy Conversion and Management、Energy和Renewable & Sustainable Energy Review等期刊上发表论文90余篇,并多次受邀报告。


共同第一作者简介:

任浩山,博士,香港城市大学博士后,专注于建筑碳中和技术与深度学习交叉领域的研究,研究内容包括高密度城市可再生能源利用与碳中和规划、面向智能电网的建筑柔性用能、大型空调系统故障检测等。在Applied Energy、Sustainable Cities and Society、Renewable & Sustainable Energy Review等期刊发表论文30余篇,Scopus h-index 15。

徐成良,博士,武汉科技大学讲师,硕士生导师,从事空调系统故障诊断及区域建筑群能耗模拟领域研究,研究兴趣包括建筑空调领域中深度学习的可解释性研究以及图神经网络技术应用。近五年以第一作者或通讯作者在Applied Energy、Energy and Buildings、Applied Thermal Engineering等期刊上发表论文15篇。

关于Applied Energy

本期小编:赵秉旭;审核人:王昊博

《Applied Energy》是世界能源领域著名学术期刊,在全球出版巨头爱思唯尔 (Elsevier) 旗下,1975年创刊,影响因子11.2,CiteScore 21.1,谷歌学术全球学术期刊第49,工程期刊第19位,可持续能源子领域第2位,本刊旨在为清洁能源转换技术、能源过程和系统优化、能源效率、智慧能源、环境污染物及温室气体减排、能源与其他学科交叉融合、以及能源可持续发展等领域提供交流分享和合作的平台。开源(Open Access)姊妹新刊《Advances in Applied Energy》现已被ESCI收录。2024年将获得第一个影响因子。全部论文可以免费下载。在《Applied Energy》的成功经验基础上,致力于发表应用能源领域顶尖科研成果,并为广大科研人员提供一个快速权威的学术交流和发表平台,欢迎关注!

公众号团队小编招募长期开放,欢迎发送自我简介(含教育背景、研究方向等内容)至[email protected]

点击“阅读原文”

喜欢我们的内容?

点个“赞”或者“再看”支持下吧!







请到「今天看啥」查看全文