专栏名称: 创新工场
搭建创新工场和创业者的沟通交流平台,在这里,您可以学习创业相关的法务、市场、财务、HR等各个业务领域所需的知识干货,还有机会参与到工场举办的创业者培训、沙龙和其他各类活动中。
目录
相关文章推荐
上海科创汇  ·  申报|青浦区2025年度企业技术中心认定 ·  昨天  
宁夏市场监管  ·  自治区市场监管厅运用DeepSeek赋能市场 ... ·  2 天前  
宁夏市场监管  ·  自治区市场监管厅运用DeepSeek赋能市场 ... ·  2 天前  
概念股逻辑  ·  人形机器人风口已至!智元机器人概念股全解析 ·  2 天前  
概念股逻辑  ·  人形机器人风口已至!智元机器人概念股全解析 ·  2 天前  
51好读  ›  专栏  ›  创新工场

围棋人机大战一周年:被AlphaGo改变的世界

创新工场  · 公众号  · 科技创业  · 2017-03-14 18:58

正文

本文转载自:量子位(微信号QbitAI)

作者:舒石、若朴

去年这个时候,三连败的李世乭扳回一局。

然而这一针兴奋剂很快失效,随后李世乭再折一阵,最终以1:4输给AlphaGo。在围棋的人机大战中,顶级人类选手完败给人工智能。

人工智能一战成名,李世乭留下落寞侧影。为AlphaGo落子的黄士杰一年后回忆说:“当时我代表AlphaGo下棋,必须保持冷静”。

从那时起到现在,人类始终生活在一个被AlphaGo改变的世界。


01


一年回望

站在围棋人机大战一周年的节点上,该如何回顾过去、展望未来呢?量子位先把几个问题抛给创新工场AI工程院副院长王咏刚。

量子位:一年后再看AlphaGo有何改变?有什么记忆犹新的片段?

王咏刚: AlphaGo出世一年,其实进入大家视野的是三个版本:5:0击败樊麾的内测版本,4:1击败李世石的版本,以Master网名60:0快棋挑落中日韩高手的版本。三个版本演进脉络明显,每次迭代都有重大升级。

最震撼的是计算机在人类传统认为极其玄妙的、电脑无法掌握的“大局观”上突飞猛进,远远将人类选手甩在身后。电脑计算“大局观”的方式,和人类培养“大局观”的思路,有根本的差别。人类没可能在这方面赶上电脑。

和樊麾对局的棋谱基本上还看不出AlphaGo的大局观有多强,和李世石对局就下出了聂卫平赞不绝口的五路肩冲,到了Master的60局,大局观体现在两个地方:

1)从始至终对局势的把握,比如第60局古力用AlphaGo的思路对付AlphaGo,把中央撑得很满,但AlphaGo不紧不慢,总是恰到好处地保持胜势。

2)已经深刻影响人类对布局的思考,大飞守角之类的变化迅速被人类棋手模仿,这和当年深蓝问世后,国际象棋的布局革命是一样的。

量子位:过去一年,有什么具体产品或研究,是基于AlphaGo的么?

王咏刚: AlphaGo用的是AI领域应用非常普遍的算法:深度学习、蒙特卡洛算法、增强学习等。

从概念上可以说,机器视觉相关的深度学习技术,包含环境-决策-反馈的智能系统,里面都有AlphaGo的影子。当然,直接的代码实现层面,肯定没有复制、粘贴这样直接借用的关系,因为AlphaGo的深度学习模型毕竟是围绕围棋的特征建立的。

DeepMind去年发布的读唇术LipNet,与英国国家医疗服务体系NHS合作推出的医疗辅助应用Streams,与眼科医院合作帮助眼部疾病诊断等等,可以说都是与AlphaGo同源的技术。

量子位:AlphaGo是否已经攻克围棋?未来可提升的空间还有哪些?

王咏刚: “攻克围棋”,如果说战胜人类选手的话,AlphaGo已经实现了,而且现在“绝艺”,DeepZen之类的程序对人类胜率也很高了。

未来最多三年必将发生的是,手机上的本地APP就可以战胜人类职业高手,现在热闹的网上围棋对弈平台都会死掉(因为对手可以轻易用手机作弊),人类围棋将回归现场竞赛,围棋培训讲师将更重视普及教育,因为中高级的提高训练完全可以用机器代练。

不过,如果说“攻克围棋”是像计算机可以穷举西洋跳棋的所有变化那样,让电脑成为围棋“上帝”,这个应该还不大可能。现在AI大部分的招数,还在人类高手可以理解的范畴内。AI也有一些可疑的“弱点”,比如官子水平到底如何等等。

以后AI和AI之间的竞赛,应该会不断促进AI提高(但这种没有太多商业利益的事情,有没有持续投入是个问题)。人类应该望尘莫及,但可以不断从AI中学习新的思想。


02


不止下棋

“AlphaGo给大家最大启发,不是赢棋,而是如何构建一个智商超过300的机器”,HTC负责研发及医疗的总裁、原Google中国工程院副院长张智威说。

构建的方法有两个:一是训练、二是数据。张智威最近在清华的一次分享( 链接地址:http://t.cn/RihpeDy )中说,“如果能做好这件事,各位都是亿万富翁。最近两年,我们每天都在想,哪些领域可以拿到无限的数据”。








请到「今天看啥」查看全文