专栏名称: 高分子科技
高分子科技®做为全球高分子产业门户及创新平台“中国聚合物网www.polymer.cn”的新锐媒体,实时报道高分子科学前沿动态,关注和分享新材料、新工艺、新技术、新设备等一线科技创新设计、解决方案,促进产学研及市场一体化合作的共同发展。
目录
相关文章推荐
高分子科学前沿  ·  湖大王侯/北大刘文/湖农大吴艳Angew:刚 ... ·  2 天前  
高分子科学前沿  ·  苏州大学李永舫院士团队李耀文、陈炜杰《AM》 ... ·  4 天前  
高分子科学前沿  ·  苏州大学陈金星等人《AFM》:Cu-Ru超结 ... ·  5 天前  
高分子科学前沿  ·  中国青年学者领衔!CaCO₃,还能发Natu ... ·  6 天前  
51好读  ›  专栏  ›  高分子科技

北化徐福建/赵娜娜/申鹤云《ACS Nano》:两亲性聚氨基酸纳米佐剂介导的光热增强免疫治疗

高分子科技  · 公众号  · 化学  · 2024-11-13 12:33

正文

点击上方蓝字 一键订阅


癌症严重威胁着人类健康,肿瘤疫苗通过激活抗原特异性免疫反应来对抗肿瘤,已经成为肿瘤治疗的一种有效手段。尽管如此,肿瘤疫苗的治疗效果受到免疫原性不足、免疫逃逸、及免疫抑制的阻碍。为此,可以开发能直接杀死肿瘤细胞并促进肿瘤相关抗原(TAAs释放的原位肿瘤疫苗来增强免疫原性,但是肿瘤微环境(TME)中乏氧、高表达的PD-L1及肿瘤中的免疫抑制细胞,极大地抑制了细胞毒性T淋巴细胞(CTL)的浸润和活化,阻碍了纳米疫苗的治疗效果。因此,开发更安全有效的纳米疫苗,同时促进TAAs释放和调节免疫抑制TME将是非常理想的策略。

近期,北京化工大学徐福建教授、赵娜娜教授、申鹤云副教授联合开发了含有抗原-光热剂与两亲性聚氨基酸纳米佐剂的肿瘤疫苗(OMPP。该纳米疫苗能在近红外光照射下触发TAAs原位释放进行个体化肿瘤治疗,改善免疫抑制TME有效激活抗肿瘤免疫反应抑制B16-OVA黑色素瘤的生长,并能防止肿瘤术后复发。研究提出了一种通过整合载体和佐剂构建纳米疫苗的简单策略,同时探索了其促进抗原释放和调节免疫抑制的固有特性,实现了高效免疫治疗,相关工作以“Potent Amphiphilic Poly(Amino Acid) Nanoadjuvant Delivers Biomineralized Ovalbumin for Photothermal-Augmented Immunotherapy”为题发表在ACS Nano



作者设计构建了由苯丙氨酸修饰的聚谷氨酸(PF)、聚赖氨酸(PL)及OVA-MnOxOM)自组装形成的纳米疫苗(OMPP)。PF-PL不仅作为载体能够高效稳定地负载抗原,并能在溶酶体的低pH微环境中质子化,诱导PF疏水性增加,促进抗原溶酶体逃逸,还用作纳米佐剂,有效诱导树突状细胞(DC成熟OMPP纳米疫苗的光热性能使其可以有效诱导肿瘤免疫原性细胞死亡并触发自体抗原的释放,增强免疫治疗的治疗效果。此外OMPP能够有效缓解肿瘤乏氧,下调PD-L1的表达,调节免疫抑制M2肿瘤相关巨噬细胞(TAM)、调节性T细胞(Treg)和髓源性抑制细胞MDSC重塑免疫抑制TME


1 OMPP纳米疫苗的制备及其光热/免疫治疗流程图

OMPP具有良好的生物安全性,并且能有效递送抗原和促进抗原的细胞质递送,同时OMPP纳米疫苗介导的光热治疗能够诱导显著的细胞免疫原性死亡,有效促进DC成熟。在B16-OVA黑色素瘤小鼠模型中研究了OMPP的抗肿瘤治疗作用和免疫应答(图2)。将B16-OVA黑素瘤小鼠随机分为PBSNIROMOMPPOMPP+NIR5个治疗组。PBS组和NIR组肿瘤生长迅速,OM治疗可以在一定程度上抑制肿瘤的生长,OMPP组的肿瘤生长受到显著抑制,OMPP+NIR组表现出更高的肿瘤抑制效率和治疗效果,证明光热/免疫治疗效果显著,OMPP+NIR组也显著延长了小鼠的存活时间。此外OMPP纳米疫苗具有良好的体内安全性,可作为原位个体化疫苗增强癌症免疫治疗。


2 OMPP纳米疫苗的光热增强免疫治疗效果


作者团队随后模拟临床术后肿瘤转移病情,手术完全切除原发肿瘤后,建立异位肿瘤复发模型,之后给小鼠接种PBSOMOMPP纳米疫苗。可以观察到,接种OMOMPP的小鼠肿瘤生长明显受到抑制(图3)。并且与OM相比,接种OMPP对肿瘤生长具有更加明显的抑制作用,这归因于OMPP强大的免疫佐剂特性。并且对小鼠的淋巴结和远端肿瘤中的免疫细胞进行分析,与PBSOM组相比,OMPP组小鼠的DC成熟比例明显增加远端肿瘤中CTLCD4+辅助性T淋巴细胞的比例明显更高,证明成功诱导了T细胞介导的全身抗肿瘤免疫同时,OMPP表现出显著的免疫治疗增强效果,使TAMM1表型极化,促炎细胞因子分泌量明显升高。相关实验结果显示,OMPP纳米疫苗可以增强小鼠T细胞介导的抗肿瘤免疫,并能够有效抑制肿瘤术后复发。此外,OMPP纳米疫苗还显示出良好的预防作用,能有效地保护接种的小鼠免受肿瘤的侵袭。


3 OMPP纳米疫苗的预防肿瘤术后复发效果评价


作者构建了载体与佐剂一体化的OMPP纳米疫苗,实现光热增强的个体化免疫治疗,并且有效预防术后肿瘤复发PF-PL纳米佐剂,通过pH响应质子化促进抗原的细胞质递送,增强了DC的成熟。OMPP有效缓解肿瘤乏氧,下调PD-L1的表达,减少免疫抑制细胞,改善免疫抑制TME这项工作充分利用了纳米疫苗的自身理化特性以促进抗原释放和逆转免疫抑制,为增强个体化免疫治疗应用提供了新思路


论文链接:

https://pubs.acs.org/doi/full/10.1021/acsnano.4c10688


相关进展

青大胡浩、于冰/北化徐福建团队 Biomaterials:负载多聚脱氧核糖核苷酸纳米载体的近红外响应水凝胶用于增强慢性伤口愈合

北化徐福建/赵娜娜教授团队 Nat. Commun.:靶向胞外聚合物基质的Janus纳米颗粒用于灵活清除耐药细菌生物膜

北化徐福建团队/青大胡浩团队《J. Control. Release》综述:基于多糖的肿瘤微环境响应药物递送系统用于肿瘤治疗

北化徐福建、段顺团队/程红波团队《Adv. Sci.》:BODIPY多功能化的天然聚合物涂层用于多药耐药细菌感染的多模式治疗

北化徐福建教授/赵娜娜教授团队《ACS Nano》:基于黑色素的杂化纳米颗粒实现增强抗肿瘤免疫治疗

北化徐福建/俞丙然、济宁医学院李敬 AM:阳离子光敏剂对细胞活性的灵活调节 - 烷基链长度对活性氧抗菌机制的影响

北化徐福建教授、王振刚教授和俞丙然教授团队《Adv. Sci》:用于辐照后伤口感染治疗的可光产H₂O₂的超分子材料

北化徐福建教授/赵娜娜教授团队 Nat. Commun.:基于生姜源细胞外囊泡的仿生电动力纳米平台用于协同抗感染治疗

北化徐福建/胡杨团队等 Matter:实现用于皮肤基因治疗的新型核酸输送体系

北化徐福建教授等《Adv. Mater.》:阳离子化多糖佐剂恢复多药耐药菌的抗生素敏感性并抑制细菌新的耐药性产生

北化徐福建教授团队与合作者 CEJ:规模化制备可高压灭菌的长效抗感染导管

北化徐福建教授团队和中国医大一院杨茂伟教授团队 ACS AMI:基于糖胺聚糖水凝胶递送系统调控伤口微环境以拯救慢性伤口愈合

北京化工大学徐福建教授团队Angew:可控双硫交换聚合合成硫醇介导内吞的聚胍化合物及其生物学应用

北化徐福建教授团队《Adv. Mater.》:构建了一种摇铃结构纳米复合物,增强抗肿瘤免疫治疗

北化徐福建教授/俞丙然教授团队、北京协和医院睢瑞芳教授 AFM:靶向性光动力抗菌纳米组装材料用于多药耐药生物膜感染的角膜炎治疗

北京化工大学徐福建教授《Nano Today》:一种新型高效抗菌和基因转染性能的纳米材料,加速伤口愈合

北京化工大学徐福建教授团队AFM:在增强生物膜渗透杀伤效率的光动力纳米颗粒取得新进展

北京化工大学徐福建教授团队《Biomaterials》:生物矿化法合成碳酸钙杂化纳米颗粒用于温和光热增强的基因治疗

北京化工大学徐福建教授课题组《AFM》:脂肪酶响应性抗菌高分子材料方面取得新进展

北京化工大学徐福建教授团队《Adv. Funct. Mater.》综述:多糖-多肽偶联物——生物医学应用的多功能材料平台

北京化工大学徐福建教授团队在基因多模式治疗取得新进展

北化徐福建教授团队综述:多糖基水凝胶的设计要点以及应用于伤口愈合的最新进展

北京化工大学徐福建教授课题组在表面抗菌功能化方面取得新进展

北京化工大学徐福建教授课题组在表面抗菌功能化方面取得新进展

北京化工大学徐福建教授和赵娜娜教授团队综述:有机/无机纳米复合材料的设计合成、性质及其生物医学应用的系列研究进展

北京化工大学徐福建教授团队:基于开环反应构建新型还原响应型支化聚赖氨酸基因载体

华东理工大学刘润辉教授和北京化工大学徐福建教授合作发表抗菌材料综述论文

高分子科技原创文章。欢迎个人转发和分享,刊物或媒体如需转载,请联系邮箱:[email protected]

诚邀投稿

欢迎专家学者提供稿件(论文、项目介绍、新技术、学术交流、单位新闻、参会信息、招聘招生等)至[email protected],并请注明详细联系信息。高分子科技®会及时推送,并同时发布在中国聚合物网上。

欢迎加入微信群 为满足高分子产学研各界同仁的要求,陆续开通了包括高分子专家学者群在内的几十个专项交流群,也包括高分子产业技术、企业家、博士、研究生、媒体期刊会展协会等群,全覆盖高分子产业或领域。目前汇聚了国内外高校科研院所及企业研发中心的上万名顶尖的专家学者、技术人员及企业家。

申请入群,请先加审核微信号PolymerChina(或长按下方二维码),并请一定注明:高分子+姓名+单位+职称(或学位)+领域(或行业),否则不予受理,资格经过审核后入相关专业群。

这里“阅读原文”,查看更多