来源:https://dahuasky.wordpress.com/
既然这个Topic的题目是关于随机测度,那么,自然是离不开“测度”(measure)这个概念的。所以在这篇文章里,我们要说一说测度。也许,在很多朋友的眼中,“测度”是一个特别理论的概念——似乎只有研究数学的人才应该关心它。这也许和大学的课程设计有关系,因为这个概念一般是在研究生的数学课程才会开始讲授,比如“实分析”或者“现代概率理论”。而且,在大多数教科书里面,它的第一次出场就已经带着厚厚的面纱——在我看过的大部分教材里面,它总是定义在sigma代数之上,而sigma代数听上去似乎是一个很玄乎的名词。
测度,其实很简单
在这里,我只是想拨开测度的神秘面纱——其实,测度是一个非常简单的事情:理解它,只需要小学生的知识,而不是研究生。
还是回到我们数星星的例子。
在这个例子里面,我们定义了一“数星星”函数,用符号N表示。这个函数的输入是一个集合(比如A和B),输出是一个数字——该集合中所包含的“星星”的数目。我们看看,这个函数有什么特点。首先,它是非负的,也就是说不可能在一个区域中含有“负数”个星星。其次,它有“可加性”。这是什么意思呢?
比如说,在上面两个不相交的区域A和B里面,各自包含了5个和44个点。那么在A和B的并集总共包含了49个点。换言之,N(A U B) = N(A) + N(B)。
严格一点的说,如果一个“集合函数”,或者说一个从集合到非负实数的映射,如果它在有限个不相交集合的并集上取的值,等于它在这些集合上分别取的值的和,那么我们就认为这个函数具有“可加性”。更进一步的,如果它在可数无限个不相交集合的并集上符合这样的可加性,那么我们就说,它是“可数可加”(Countably additive)。
一个非负“集合函数”,如果对空集取值为0,并且在“一系列集合上”具有可列可加性,那么这个“集合函数”就叫做一个“测度”(Measure)。作为例子,上面的“数星星”函数就是定义在所有二维空间子集上的一个测度。同样的,我们可以举出,很多具体的“测度”的例子,比如:
1.各个区域内的所有星星的总质量
2.各个区域的面积大小
不可测集和分球悖论
不过,在某些条件下,测度并不能定义在全部子集上。说通俗点,就是对其中一些集合,我们不可能定义出它的测度。比如说,在二维平面,我们可以按照一般的理解定义面积函数,比如长和宽分别为a和b的长方形面积为ab。对于复杂一点的形状,我们可以通过积分来计算面积。但是,是不是所有的二维平面的子集都存在一个“面积”呢?正确的答案显得有点“违背常识”:在承认选择公理(Axiom of Choice)正确的情况下,确实有一些集合没法定义出面积。或者说,无论我们在这些集合上定义面积为多少,都会导致自相矛盾的结果。
这里要注意的是,“没法定义面积”和“面积为零”是两回事。比如,在二维集合上的单个离散点或者直线,面积都是零。而那些“没法定义面积”的子集——我们称之为“不可测集”都是一些非常非常奇怪的集合——对于这些集合,我们把它的面积定义为零,或者别的什么非零的数,都会导致自相矛盾。这样的集合是数学家们用特殊的巧妙方法构造出来的——在实际生活中大家是肯定不会碰到的。这样的构造并不困难,但是很巧妙。有兴趣的朋友可以在几乎每本讲测度论的教科书中找到这种构造,这里就不详细说了。
(注:上图不是我制作的,而是出自
http://www.daviddarling.info/
)
关于不可测 集,有一个很著名的“悖论”,叫做“巴拿赫-塔斯基分球悖论”(Banach-Tarski Paradox)。如果说,某些奇怪的集合不能定义出面积还能让很多人勉强接受的话,那么“塔斯基分球”可能会让很多人“简直无法接受”——包括在上世纪二三十年代的很多著名数学家。这个“怪论”是这么说的:
我们可以把一个三维的半径为1的实心球用某种巧妙方法分成五等分——五等分的意思是,把其中一份旋转平移后可以和另外一份重合——然后把这五个分块旋转平移后,可以组合成两个半径为1的实心球。简单的说,一个球分割重组后变成了两个同样大小的球!
当然了,这样的过程还可以继续下去,两个变四个,四个变八个。。。。。。有人说,这显然不正确吧,然后他这么Argue:
如果一个实心球体积为V(因为球的半径是1,所以V > 0),那么五个等分块,每块体积为V/5,平移旋转不改变体积,所以,无论它们如何组合,最后得到的东西总体积是V,而不可能是2V。