专栏名称: 大道无形我有型
买股票就是买公司。 人们关注我们往往是因为我们做了的那些事情, 其实我们之所以成为我们,很大程度上还因为我们不做的那些事情。 要求提问者每次提一个问题,钱会全部去公益。多于一个问题我会回答第一个问题,不评论友商。 另外,我的能力圈有限,大部分公司我都不了解。我喜欢的公司我会说的,不用问。
目录
相关文章推荐
VC/PE/MA金融圈  ·  《福布斯》公布2025年度香港50大富豪榜, ... ·  20 小时前  
Wind万得  ·  DeepSeek周末大事不断! ·  昨天  
中国金融杂志  ·  国家外汇局最新公布! ·  2 天前  
国际金融报  ·  奔驰在华裁员15%,赔偿N+9?公司回应→ ·  3 天前  
51好读  ›  专栏  ›  大道无形我有型

回复@A大师-懒惰的投资人: 我接受黄说的Deepseek的创新-20250302022122

大道无形我有型  · 雪球动态  · 金融  · 2025-03-02 02:21

正文

2025-03-02 02:21

回复 @A大师-懒惰的投资人 : 我接受黄说的Deepseek的创新不会减少对算力的需求(其实就是算力需求会继续增长)的观点,也大致理解他认为NVDA在算力上的地位不会受到威胁的意思。
查看图片 // @A大师-懒惰的投资人 :回复 @babygirl :这是DS自己的回答 [笑] (Due to technical issues, the search service is temporarily unavailable.)
DeepSeek, like many AI and deep learning companies, likely relies on **Nvidia's CUDA** for GPU acceleration, given its widespread adoption in the industry. Here's a breakdown of why:
1. **GPU Dependency**: Training large AI models typically requires powerful GPUs. Nvidia's GPUs (e.g., A100, H100) dominate this space, and CUDA is the primary platform for optimizing computations on these GPUs.
2. **Frameworks and Libraries**: Popular deep learning frameworks (e.g., PyTorch, TensorFlow) are built on CUDA for GPU acceleration. Unless DeepSeek uses custom alternatives, they likely depend on these CUDA-optimized tools.
3. **Cloud Infrastructure**: If DeepSeek uses cloud providers (AWS, Azure, GCP), their GPU instances are predominantly Nvidia-based, requiring CUDA for efficient computation.
4. **Ecosystem Lock-In**: The deep learning ecosystem heavily favors CUDA due to compatibility with libraries (cuDNN, NCCL) and pre-trained models. Switching to alternatives like AMD ROCm would involve significant effort and potential performance trade-offs.
**Exceptions**: If DeepSeek uses custom hardware (e.g., TPU-like accelerators) or prioritizes non-Nvidia solutions, they might reduce CUDA dependency. However, there's no public evidence of this.
**In short**, while specific internal infrastructure details aren't public, it's highly probable that DeepSeek depends on CUDA for GPU-accelerated AI workloads, as do most companies in the field.
$英伟达(NVDA)$ $苹果(AAPL)$ $谷歌A(GOOGL)$
Nvidia 即将发布的第四季度和 25 财年收益报告至关重要,其中第四季度 382 亿美元的营收和 85 美分的每股收益等关键指标备受关注。






请到「今天看啥」查看全文