专栏名称: Python开发者
人生苦短,我用 Python。伯乐在线旗下账号「Python开发者」分享 Python 相关的技术文章、工具资源、精选课程、热点资讯等。
目录
相关文章推荐
Python爱好者社区  ·  男生看见雷军路过,直接冲过去递简历,结果... ·  5 天前  
Python爱好者社区  ·  16岁中学生获正高职称,后续来了 ·  6 天前  
Python爱好者社区  ·  开源!Transformers 快速入门书 ·  1 周前  
Python爱好者社区  ·  深度学习“四大名著”发布 ·  1 周前  
51好读  ›  专栏  ›  Python开发者

Python + Django 如何支撑了 7 亿月活用户的 Instagram?

Python开发者  · 公众号  · Python  · 2017-05-31 19:56

正文

(点击上方蓝字,快速关注我们)


来源:伯乐在线 - piglei

如有好文章投稿,请点击 → 这里了解详情



PyCon 简介


PyCon 是全世界最大的以 Python 编程语言为主题的技术大会。大会由 Python 社区组织,每年举办一次。在大会上,来自世界各地的 Python 用户与核心开发者齐聚一堂,共同分享 Python 世界的新鲜事、Python 语言的应用案例、使用技巧等等内容。


Instagram 简介


Instagram 是一款移动端的照片与视频分享软件,由 Kevin Systrom 和 Mike Krieger 在 2010 年创办。Instagram 在发布后开始快速流行。于 2012 年被 Facebook 以 10 亿美元的价格收购。而当时 Instagram 的员工仅有区区 13 名。


如今,Instagram 的总注册用户达到 30 亿,月活用户超过 7 亿 作为对比,微信最新披露的月活跃用户为 9.38 亿)。而令人吃惊的是,这么高的访问量背后,竟完全是由以速度慢著称的 Python + Django 支撑。


在 Python 2017 上,Instagram 的工程师们带来了一个有关 Python 在 Instagram 的主题演讲,同时还分享了 Instagram 如何将整个项目运行环境升级到 Python 3 的故事。


本文为该次演讲的内容摘要。


Python @Instagram


为什么选择 Python 和 Django


Instagram 选择 Django 的原因很简单,Instagram 的两位创始人 (Kevin Systrom and Mike Krieger) 都是产品经理出身。在他们想要创造 Instagram 时,Django 是他们所知道的最稳定和成熟的技术之一


时至今日,即使已经拥有超过 30 亿的注册用户。Instagram 仍然是 Python 和 Django 的重度使用者。Instagram 的工程师 Hui Ding 说到: 『一直到用户 ID 已经超过了 32bit int 的限额(约为 20 亿),Django 本身仍然没有成为我们的瓶颈所在。』


不过,除了使用 Django 的原生功能外,Instagram 还对 Django 做了很多定制化工作:


  • 扩展 Django Models 使其支持 Sharding (一种数据库分片技术),Instagram Engneering 博客专门为这件事情写过一篇博客,可参阅:Sharding & IDs at Instagram

  • 手动关闭 GC(垃圾回收)来提升 Python 内存管理效率,他们同样也写过一篇博客来说明这件事情:Dismissing Python Garbage Collection at Instagram

  • 在位于不同地理位置的多个数据中心部署整套系统


Python 语言的优势所在


Instagram 的联合创始人 Mike Krieger 说过: 『我们的用户根本不关心 Instagram 使用了哪种关系数据库,他们当然也不关心 Instagram 是用什么编程语言开发的。』


所以,Python 这种 简单 而且 实用至上 的编程语言最终赢得了 Instagram 的青睐。他们认为,使用 Python 这种简单的语言有助于塑造 Instagram 的工程师文化,那就是:


  • 专注于定位问题、解决问题 – 而不是工具本身的各种花花绿绿的特性

  • 使用那些经过市场验证过的成熟技术方案 – 而不用被工具本身的问题所烦扰

  • 用户至上:专注于用户所能看到的新特性,为用户带去价值


但是,即使使用 Python 语言有这么多好处,它还是很慢,不是吗?


不过,这对于 Instagram 不是问题,因为他们认为:『Instagram 的最大瓶颈在于开发效率,而不是代码的执行效率』


At Instagram, our bottleneck is development velocity, not pure code execution.


所以,最终的结论是:你完全可以使用 Python 语言来实现一个超过几十亿用户使用的产品,而根本不用担心语言或框架本身的性能瓶颈。


如何提升运行效率


但是,即使是选用了拥有诸多好处的 Python 和 Django。在 Instagram 的用户数迅速增长的过程中,性能问题还是出现了:服务器数量的增长率已经慢慢的超过了用户增长率。Instagram 是怎么应对这个问题的呢?


他们使用了这些手段来缓解性能问题:


  • 开发工具来帮助调优:Instagram 开发了很多涵盖各个层面的工具,来帮助他们进行性能调优以及找到性能瓶颈。

  • 使用 C/C++ 来重写部分组件:把那些稳定而且对性能最敏感的组件,使用 C 或 C++ 来重写,比如访问 memcache 的 library。

  • 使用 Cython:Cython 也是他们用来提升 Python 效率的法宝之一。


除了上面这些手段,他们还在探索异步 IO 以及新的 Python Runtime 所能带来的性能可能性。


升级到 Python 3


在相当长的一段时间,Instagram 都跑在 Python 2.7 + Django 1.3 的组合之上。在这个已经落后社区很多年的环境上,他们的工程师们还打了非常非常多的小 patch。难道他们要被永远卡在这个版本上吗?


所以,在经过一系列的讨论后,他们最终做出一个重大的决定:升级到 Python 3!!


事实上,Instagram 目前已经完成了将运行环境迁移到 Python 3 的工作 – 他们的整套服务已经在 Python 3 上跑了好几个月了。那么他们是怎么做到的呢?接下来便是由 Instagram 工程师 Lisa guo 带来的 Instagram 如何迁移到 Python 3 的故事。


Instagram 升级到 Python 3 的故事


为什么要升级到 Python 3


对于 Instagram 来说,下面这些因素是推动他们将运行环境迁移到 Python 3 的主要原因:


1. 新特性:类型注解 Type Annotations


看看下面这段代码:


def compose_from_max_id(max_id):

    '''@param str max_id'''


图中函数的 max_id 参数究竟是什么类型呢?int?tuple?或是 list? 等等,函数文档里面说它是 str 类型。


但随着时间推移,万一这个参数的类型发生变化了呢?如果某位粗心的工程师修改代码的同时忘了更新文档,那就会给函数的使用者带来很大麻烦,最终还不如没有注释呢。


2. 性能


Instagram 的整个 Django Stack 都跑在 uwsgi 之上,全部使用了同步的网络 IO。这意味着同一个 uwsgi 进程在同一时间只能接收并处理一个请求。这让如何调优每台机器上应该运行的 uwsgi 进程数成了一个麻烦事:


为了更好利用 CPU,使用更多的进程数?但那样会消耗大量的内存。而过少的进程数量又会导致 CPU 不能被充分利用。


为此,他们决定跳过 Python 2 中哪些蹩脚的异步 IO 实现 (可怜的 gevent、tornado、twisted 众),直接升级到 Python 3,去探索标准库中的 asyncio 模块所能带来的可能性。


3. 社区


因为 Python 社区已经停止了对 Python 2 的支持。如果把整个运行环境升级到 Python 3,Instagram 的工程师们就能和 Python 社区走的更近,可以更好的把他们的工作回馈给社区。


确定迁移方案


在 Instagram,进行 Python 3 的迁移需要必须满足两个前提条件:


  1. 不停机,不能有任何的服务因此不可用

  2. 不能影响产品新特性的开发


但是,在 Instagram 的开发环境中,要满足上面这两点来完成迁移到 Python 3.6 这种庞大的工程是非常困难的。


基于主分支的开发流程


即便使用了以多分支功能著称的 git,Instagram 所有的开发工作都是主要在 master 分支上进行的,Instagram 所奉行的开发哲学是:『不管是多大的新特性或代码重构,都应该拆解成较小的 Commit 来进行。』


那些被合并进 master 分支的代码,都将在一个小时内被发布到线上环境。而这样的发布过程每天将会发生上百次。在这么频繁的发布频率下,如何在满足之前的那两个前提下来完成迁移变得尤其困难。


被弃用的迁移方案


创建一个新分支


很多人在处理这类问题时,第一个蹦进脑子的想法就是: 『让我们创建一个分支,当我们开发完后,再把分支合并进来』


但在 Instagram 这么高的迭代频率上,使用一个独立分支并不是好主意:


  1. Instagram 的 Codebase 每天都在频繁更新,在开发 Python 3 分支的过程中,让新分支与现有 master 分支保持同步开销极大,同时极易出错

  2. 最终将 Python 3 分支这个改动非常多的分支合并回 Master 拥有非常高的风险

  3. 只有少数几个工程师在 Python 3 分支上专职负责升级工作,其他想帮助迁移工作的工程师无法参与进来


挨个替换接口


还有一个方案就是,挨个替换 Instagram 的 API 接口。但是 Instagram 的不同接口共享着很多通用模块。这个方案要实施起来也非常困难。


微服务


还有一个方案就是将 Instagram 改造成微服务架构。通过将那些通用模块重写成 Python 3 版本的微服务来一步步完成迁移工作。


但是这个方案需要重新组织海量的代码。同时,当发生在进程内的函数调用变成 RPC 后 ,整个站点的延迟会变大。此外,更多的微服务也会引入更高的部署复杂度。


所以,既然 Instagram 的开发哲学是:小步前进,快速迭代。他们最终决定的方案是:一步一步来,最终让 master 分支上的代码同时兼容 Python 2 和 Python 3


开始迁移工作


既然要让整个 codebase 同时兼容 Python 2 和 Python 3,那么首先要符合这点的就是那些被大量使用的第三方 package。针对第三方 package,Instagram 做到了下面几点:


  • 拒绝引入所有不兼容 Python 3 的新 package

  • 去掉所有不再使用的 package

  • 替换那些不兼容 Python 3 的 package


在代码的迁移过程中,他们使用了工具 modernize 来帮助他们。


使用 modernize 时,有一个小技巧:每次修复多个文件的一个兼容问题,而不是一下修复一个文件中的多个兼容问题。 这样可以让 Code Review 过程简单很多,因为 Reviewer 每次只需要关注一个问题。


使用单元测试来帮助迁移


对于 Python 这种灵活性极强的动态语言来说,除了真正去执行代码外,几乎没有其他比较好的检查代码错误的手段。


前面提到,Instagram 所有被合并到 master 的代码提交会在一个小时内上线到线上环境,但这不是没有前提条件的。在上线前,所有的提交都需要通过成千上万个单元测试。


于是,他们开始加入 Python 3 来执行所有的单元测试。一开始,只有极少数的单元测试能够在 Python 3 环境下通过,但随着 Instagram 的工程师们不断的修复那些失败的单元测试,最终所有的单元测试都可以在 Python 3 环境下成功执行。


单元测试的局限性


但是,单元测试也是有局限性的:


  • Instagram 的单元测试没有做到 100% 的代码覆盖率

  • 很多第三方模块都使用了 mock 技术,而 mock 的行为与真实的线上服务可能会有所不同


所以,当所有的单元测试都被修复后,他们开始在线上正式使用 Python 3 来运行服务。


这个过程并不是一蹴而就的。首先,所有的 Instagram 工程师开始访问到这些使用 Python 3 来执行的新服务,然后是 Facebook 的所有雇员,随后是 0.1%、20% 的用户,最终 Python 3 覆盖到了所有的 Instagram 用户。



图:循序渐进的发布流程


迁移过程的技术问题


Instagram 在迁移到 Python 3 时碰到很多问题,下面是最典型的几个:


Unicode 相关的字符串问题


Python 3 相比 Python 2 最大的改动之一,就是在语言内部对 unicode 的处理。


在 Python 2 中,文本类型 (也就是 unicode) 和二进制类型 (也就是 str) 的边界非常模糊。很多函数的参数既可以是文本,也可以是二进制。但是在 Python 3 中,文本类型和二进制类型的字符串被完全的区分开了。


于是,下面这段在 Python 2 下可以正常运行的代码在 Python 3 下就会报错:


mymac = hmac.new('abc')

TypeError: key: expected bytes or bytearray, but got 'str'


解决办法其实很简单,只要加上判断:如果 value 是文本类型,就将其转换为二进制。如下所示:


value = 'abc'

if isinstance(value, six.text_type):

    value = value.encode(encoding='utf-8')

mymac = hmac.new(value)


但是,在整个代码库中,像上面这样的情况非常多。作为开发人员,如果需要在调用每个函数时都要想想: 这里到底是应该编码成二进制,或者是解码成文本呢? 将会是非常大的负担。


于是 Instagram 封装了一些名为 ensure_str()、ensure_binary()、ensure_text() 的帮助函数,开发人员只需对那些不确定类型的字符串,使用这些帮助函数先做一次转换就好。


mymac = hmac.new(ensure_binary('abc'))


不同 Python 版本的 pickle 差异


Instagram 的代码中大量使用了 pickle。比如用它序列化某个对象,然后将其存储在 memcache 中。如下面的代码所示:


memcache_data = pickle.dumps(data, pickle.HIGHEST_PROTOCOL)

data = pickle.loads(memcache_data)


问题在于,Python 2 与 Python 3 的 pickle 模块是有差别的。


如果上文的第一行代码,刚好是由 Python 3 运行的服务进行序列化后存入 memcache。而反序列化的过程却是由 Python 2 进行,那代码运行时就会出现下面的错误:


ValueError: unsupported pickle protocol: 4


这是由于在 Python 3 中,pickle.HIGHEST_PROTOCOL 的值为 4,而 Python 2 中的的 pickle 最高支持的版本号却是 2。那么如何解决这个问题呢?


Instagram 最终选择让 Python 2 和 Python 3 使用完全不同的 namespace 来访问 memcache。通过将二者的数据读写完全隔开来解决这个问题。


迭代器


在 Python 3 中,很多内置函数被修改成了只返成迭代器 Iterator:


map()

filter()

dict.items()


迭代器有诸多好处,最大的好处就是,使用迭代器不需要一次性分配大量内存,所以它的内存效率比较高。


但是迭代器有一个天然的特点,当你对某个迭代器做了一次迭代,访问完它的内容后,就没法再次访问那些内容了。迭代器中的所有内容都只能被访问一次。


在 Instagram 的 Python 3 迁移过程中,就因为迭代器的这个特性被坑了一次,看看下面这段代码:


CYTHON_SOURCES = [a.pyx, b.pyx, c.pyx]

builds = map(BuildProcess, CYTHON_SOURCES)

while any(not build.done() for build in builds):

    pending = [build for build in builds if not build.st


这段代码的用处是挨个编译 Cython 源文件。当他们把运行环境切换到 Python 3 后,一个奇怪的问题出现了:CYTHON_SOURCES 中的第一个文件永远都被跳过了编译。为什么呢?


这都是迭代器的锅。在 Python 3 中,map() 函数不再返回整个 list,而是返回一个迭代器。


于是,当第二行代码生成 builds 这个迭代器后,第三行代码的 while 循环迭代了 builds,刚好取出了第一个元素。于是之后的 pending 对象便里面永远少了那第一个元素。


这个问题解决起来也挺简单的,你只要手动的吧 builds 转换成 list 就可以了:


builds = list(map(BuildProcess, CYTHON_SOURCES))


但是这类 bug 非常难定位到。如果用户的 feeds 里面永远少了那最新的第一条,用户很少会注意到。


字典的顺序


看看下面这段代码:


>>> testdict = {'a': 1, 'b': 2, 'c': 3}

>>> json.dumps(testdict)


它会输出什么结果呢?


# Python2

'{"a": 1, "c": 3, "b": 2}'

# Python 3.5.1

'{"c": 3, "b": 2, "a": 1}'    # or

'{"c": 3, "a": 1, "b": 2}'

# Python 3.6

'{"a": 1, "b": 2, "c": 3}'


在不同的 Python 版本下,这个 json dumps 的结果是完全不一样的。甚至在 3.5.1 中,它会完全随机的返回两个不同的结果。Instagram 有一段判断配置文件是否发生变动的模块,就是因为这个原因出了问题。


这个问题的解决办法是,在调用 json.dumps 传入 sort_keys=True 参数:


>>> json.dumps(testdict, sort_keys=True)

'{"a": 1, "b": 2, "c": 3}'


迁移到 Python 3.6 后的性能提升


当 Instagram 解决了这些奇奇怪怪的版本差异问题后,还有一个巨大的谜题困扰着他们:性能问题


在 Instagram,他们使用两个主要指标来衡量他们的服务性能:


  • 每次请求产生的 CPU 指令数(越低越好)

  • 每秒能够处理的请求数(越高越好)


所以,当所有的迁移工作完成后,他们非常惊喜的发现:第一个性能指标,每次请求产生的 CPU 指令数居然足足下降了 12% !!!


但是,按理说第二个指标 – 每秒请求数也应该获得接近 12% 的提升。不过最后的变化却是 0%。究竟是出了什么问题呢?


他们最终定位到,是由于不同 Python 版本下的内存优化配置不同,导致 CPU 指令数下降带来的性能提升被抵消了。那为什么不同 Python 版本下的内存优化配置会不一样呢?


这是他们用来检查 uwsgi 配置的代码:


if uwsgi.opt.get('optimize_mem', None) == 'True':

    optimize_mem()


注意到那段 ... ... == 'True' 了吗?在 Python 3 中,这个条件判断总是不会被满足。问题就在于 unicode。在将代码中的 'True' 换成 b'True'(也就是将文本类型换成二进制,这种判断在 Python 2 中完全不区分的)后,问题解决了。


所以,最终因为加上了一个小小的字幕 'b',程序的整体性能提升了 12%。


结论


在今年二月份,Instagram 的后端代码的运行环境完全切换到了 Python 3 下:



图:Instagram 版本迁移时间线


当所有的代码都都迁移到 Python 3 运行环境后:


  • 节约了 12% 的整体 CPU 使用率(Django/uwsgi)

  • 节约了 30% 的内存使用(celery)


同时,在整个迁移期间,Instagram 的月活用户经历了从 4 亿到 6亿 的巨大增长。产品也发布了评论过滤、直播等非常多新功能。


那么,那几个最开始驱动他们迁移到 Python 3 的目的呢?


  • 类型注解:Instagram 的整个 codebase 里已经有 2% 的代码添加上了类型注解,同时他们还开发了一些工具来辅助开发者添加类型提示

  • asyncio:他们在单个接口中利用 asynio 平行的去做多件事情,最终降低了 20-30% 的请求延迟。

  • 社区:他们与 Intel 的工程师联合,帮助他们更好的对 CPU 利用率进行调优。同时还开发了很多新的工具,帮助他们进行性能调优


Instagram 带给我们的启示


Instagram 的演讲视频时间不长,但是内容很丰富,在编写此文前,我完全没有想到最终的文章会这么长。


那些,Instagram 的视频可以给我们哪些启示呢?


  • Python + Django 的组合完全可以负载用户数以 10 亿记的服务,如果你正准备开始一个项目,放心使用 Python 吧!

  • 完善的单元测试对于复杂项目是非常有必要的。如果没有那『成千上万的单元测试』。很难想象 Instagram 的迁移项目可以成功进行下去。

  • 开发者和同事也是你的产品用户,利用好他们。用他们为你的新特性发布前多一道测试。

  • 完全基于主分支的开发流程,可以给你更快的迭代速度。前提是拥有完善的单元测试和持续部署流程。

  • Python 3 是大势所趋,如果你正准备开始一个新项目,无需迟疑,拥抱 Python 3 吧!


好了,就到这儿吧。Happy Hacking!


看完本文有收获?请转发分享给更多人

关注「Python开发者」,提升Python技能