随着大语言模型的发展,许多模型已经能够处理超过100k+ tokens的输入上下文。然而,这些模型在生成长文本时,普遍存在输出长度受限的问题。
在实际应用中,为了克服这个问题,人们普遍采用「分而治之」的方法,让模型一段一段地写。这种方法在一定程度上似乎能够解决长文本输出的问题,但往往会导致 1)消耗 tokens 量成倍甚至指数增加;2)前后内容不连贯。
如何才能让模型拥有更强的长文本输出能力呢?我们发现,模型输出长度受限的主要原因在于,监督微调(SFT)数据集缺乏足够长的输出样例。
针对这一问题,我们构建了一个 6000 多条2k-20k words 不等的长输出数据集 LongWriter-6k,并在此基础上,对 GLM-4-9B 进行
SFT微调
和
DPO对齐
。新的模型拥有了能够
生成超过10,000字/词连贯文本的能力
。
下面是我们用 LongWriter-9B 模型,以「黑神话 · 悟空」为题撰写的玄幻小说。
> prompt:
请帮我撰写一个主题为「黑神话·悟空」玄幻小说,小说以孙悟空为核心,讲述一个桀骜不驯,打怪升级,追逐梦想的玄幻故事,不少于 10000 字
论文:
https://arxiv.org/abs/2408.07055
代码:
https://github.com/THUDM/LongWriter
模型:
Hugging Face:https://hf.co/THUDM/LongWriter-glm4-9b
魔搭:https://modelscope.cn/models/ZhipuAI/LongWriter-glm4-9b
数据:
Hugging Face:https://hf.co/datasets/THUDM/LongWriter-6k
魔搭:https://modelscope.cn/datasets/ZhipuAI/LongWriter-6k
生成长度限制的根源
我们对当前最先进的长上下文模型的最大输出长度做了测试,这些测试会明确要求模型生成不同长度的内容,例如:撰写一篇关于罗马帝国历史的10000字文章。
从上图可以看出,所有模型生成的内容,几乎都不超过 2000 字。
原因是什么呢?
我们做了一个初步的研究,用不同最大输出长度的数据对 GLM-4-9B-base 模型进行 SFT 微调。结果如下:
伴随着要求长度的增加,不同数据集 SFT 微调出来的模型,存在最大输出长度限制。
因此可以得出一个结论,尽管长文本模型在预训练阶段接触了更长的文本序列,但其最大生成长度实际上被 SFT 数据集中输出长度的上限所限制。换句话说,模型“读”到的内容决定了它能“写”多长。
这一发现可以解释当前模型普遍存在的 2000 字输出限制——因为现有的 SFT 数据集很少包含超过此长度的样例;而另一方面,很多数据集都是用现有 LLM 自动构建的,因此它们也继承了源模型的输出长度限制。
自动构建长输出数据集
为了解决 SFT 数据集中长输出文本数据缺失的问题,我们设计了一个名为
「AgentWrite」
的 pipeline,通过分解长生成任务,让现有模型来生成更长的具备连贯性的输出。
具体来说,AgentWrite
-
首先,会根据用户的输入生成一个详细的写作计划,包括每段内容的结构和目标字数
-
其次,模型依次完成每个子任务,并将生成的段落串联起来,最终形成完整的长文本输出。
通过这种方法,AgentWrite 能够生成超过 20,000 字的高质量文本。
教模型生成超长输出
有了一个利用 LLMs 自动生成的更长输出的数据集,我们不禁好奇:是否可以将这种生成超长输出的能力传授给LLMs,使它们能够在单次输出中完成长篇写作任务?
我们从 GLM-4 的 SFT 数据中筛选出了 3,000 条指令(主要是中文),另外从 WildChat-1M(一个包含用户与ChatGPT/GPT-4对话记录的公开日志)中选择了3,000条指令(主要是英文),通过 AgentWrite 并利用 GPT-4o 生成了6,000条长输出的SFT数据,即 LongWriter-6k。
在模型训练中,为了确保模型的通用能力,我们将LongWriter-6k与通用SFT数据(180k 条数据)结合,形成整个训练集。输出长度分布如下:
可以看到LongWriter-6k有效地补充了通用SFT数据中2,000字以上输出样例的不足,并且LongWriter-6k中的输出长度在2,000至10,000词之间分布相对均匀。
微调(SFT):
我们分别针对 GLM-4-9B 和 Llama-3.1-8B 做了 SFT 微调,这两个模型都是基础模型,支持最多128k tokens的上下文窗口,非常适合用于长输出的训练。我们得到两个模型:LongWriter-9B(GLM-4-9B-LongWriter的缩写)和LongWriter-8B(Llama-3.1-8B-LongWriter的缩写)。
对齐(DPO):
为了进一步提高模型的输出质量,并增强其在指令中遵循长度约束的能力,我们在经过 SFT 微调的LongWriter-9B模型上进行了直接偏好优化。DPO数据来自GLM-4的 DPO 数据(大约50,000条),同时包含4k条我们标注的长输出正负样本对。
结果怎么样?
我们在LongBench-Write上对4个专有模型和5 个开源模型进行了评测,如下表所示:
其中 S_l 表示输出长度是否符合要求的得分。当输出长度符合要求时,得分为100;当输出长度超过要求的4倍或低于要求的1/3时,得分会线性下降至0。
S_q 则是从相关性、准确性、连贯性、清晰度、广度与深度以及阅读体验等六个维度,用 GPT-4o 进行的打分,并取平均,代表了生成内容的质量。
最终得分 \overline{S} 通过 S_l 和 S_q 的平均值计算得出。