专栏名称: 机器学习算法与Python实战
长期跟踪关注统计学、数据挖掘、机器学习算法、深度学习、人工智能技术与行业发展动态,分享Python、机器学习等技术文章。回复机器学习有惊喜资料。
目录
相关文章推荐
哲学园  ·  ​埃里克·沃格林|伟大的韦伯 ·  13 小时前  
互联网思维  ·  罗素:人性的四大欲望 ·  2 天前  
互联网思维  ·  罗素:人性的四大欲望 ·  2 天前  
哲学园  ·  ​对话 DeepSeek ... ·  3 天前  
51好读  ›  专栏  ›  机器学习算法与Python实战

【Python】60个“特征工程”计算函数(Python代码)

机器学习算法与Python实战  · 公众号  ·  · 2024-05-29 15:06

正文


近期一些朋友询问我关于如何做特征工程的问题,有没有什么适合初学者的有效操作。

特征工程的问题往往需要具体问题具体分析,当然也有一些暴力的策略,可以在竞赛初赛前期可以带来较大提升,而很多竞赛往往依赖这些信息就可以拿到非常好的效果,剩余的则需要结合业务逻辑以及很多其他的技巧,此处我们将平时用得最多的聚合操作罗列在下方。
最近刚好看到一篇文章汇总了非常多的聚合函数,就摘录在下方,供许多初入竞赛的朋友参考。

聚合特征汇总

pandas自带的聚合函数
其它重要聚合函数
其它重要聚合函数&分类分别如下。
def median(x):
    return np.median(x)

def variation_coefficient(x):
    mean = np.mean(x)
    if mean != 0:
        return np.std(x) / mean
    else:
        return np.nan

def variance(x):
    return np.var(x)

def skewness(x):
    if not isinstance(x, pd.Series):
        x = pd.Series(x)
    return pd.Series.skew(x)

def kurtosis(x):
    if not isinstance(x, pd.Series):
        x = pd.Series(x)
    return pd.Series.kurtosis(x)

def standard_deviation(x):
    return np.std(x)

def large_standard_deviation(x):
    if (np.max(x)-np.min(x)) == 0:
        return np.nan
    else:
        return np.std(x)/(np.max(x)-np.min(x))

def variation_coefficient(x):
    mean = np.mean(x)
    if mean != 0:
        return np.std(x) / mean
    else:
        return np.nan

def variance_std_ratio(x):
    y = np.var(x)
    if y != 0:
        return y/np.sqrt(y)
    else:
        return np.nan

def ratio_beyond_r_sigma(x, r):
    if x.size == 0:
        return np.nan
    else:
        return np.sum(np.abs(x - np.mean(x)) > r * np.asarray(np.std(x))) / x.size

def range_ratio(x):
    mean_median_difference = np.abs(np.mean(x) - np.median(x))
    max_min_difference = np.max(x) - np.min(x)
    if max_min_difference == 0:
        return np.nan
    else:
        return mean_median_difference / max_min_difference
    
def has_duplicate_max(x):
    return np.sum(x == np.max(x)) >= 2

def has_duplicate_min(x):
    return np.sum(x == np.min(x)) >= 2

def has_duplicate(x):
    return x.size != np.unique(x).size

def count_duplicate_max(x):
    return np.sum(x == np.max(x))

def count_duplicate_min(x):
    return np.sum(x == np.min(x))

def count_duplicate(x):
    return x.size - np.unique(x).size

def sum_values(x):
    if len(x) == 0:
        return 0
    return np.sum(x)

def log_return(list_stock_prices):
    return np.log(list_stock_prices).diff() 

def realized_volatility(series):
    return np.sqrt(np.sum(series**2))

def realized_abs_skew(series):
    return np.power(np.abs(np.sum(series**3)),1/3)

def realized_skew(series):
    return np.sign(np.sum(series**3))*np.power(np.abs(np.sum(series**3)),1/3)

def realized_vol_skew(series):
    return np.power(np.abs(np.sum(series**6)),1/6)

def realized_quarticity(series):
    return np.power(np.sum(series**4),1/4)

def count_unique(series):
    return len(np.unique(series))

def count(series):
    return series.size

#drawdons functions are mine
def maximum_drawdown(series):
    series = np.asarray(series)
    if len(series)<2:
        return 0
    k = series[np.argmax(np.maximum.accumulate(series) - series)]
    i = np.argmax(np.maximum.accumulate(series) - series)
    if len(series[:i])<1:
        return np.NaN
    else:
        j = np.max(series[:i])
    return j-k

def maximum_drawup(series):
    series = np.asarray(series)
    if len(series)<2:
        return 0
    

    series = - series
    k = series[np.argmax(np.maximum.accumulate(series) - series)]
    i = np.argmax(np.maximum.accumulate(series) - series)
    if len(series[:i])<1:
        return np.NaN
    else:
        j = np.max(series[:i])
    return j-k

def drawdown_duration(series):
    series = np.asarray(series)
    if len(series)<2:
        return 0

    k = np.argmax(np.maximum.accumulate(series) - series)
    i = np.argmax(np.maximum.accumulate(series) - series)
    if len(series[:i]) == 0:
        j=k
    else:
        j = np.argmax(series[:i])
    return k-j

def drawup_duration(series):
    series = np.asarray(series)
    if len(series)<2:
        return 0

    series=-series
    k = np.argmax(np.maximum.accumulate(series) - series)
    i = np.argmax(np.maximum.accumulate(series) - series)
    if len(series[:i]) == 0:
        j=k
    else:
        j = np.argmax(series[:i])
    return k-j

def max_over_min(series):
    if len(series)<2:
        return 0
    if np.min(series) == 0:
        return np.nan
    return np.max(series)/np.min(series)

def mean_n_absolute_max(x, number_of_maxima = 1):
    """ Calculates the arithmetic mean of the n absolute maximum values of the time series."""
    assert (
        number_of_maxima > 0
    ), f" number_of_maxima={number_of_maxima} which is not greater than 1"

    n_absolute_maximum_values = np.sort(np.absolute(x))[-number_of_maxima:]

    return np.mean(n_absolute_maximum_values) if len(x) > number_of_maxima else np.NaN


def count_above(x, t):
    if len(x)==0:
        return np.nan
    else:
        return np.sum(x >= t) / len(x)

def count_below(x, t):
    if len(x)==0:
        return np.nan
    else:
        return np.sum(x <= t) / len(x)

#number of valleys = number_peaks(-x, n)
def number_peaks(x, n):
    """
    Calculates the number of peaks of at least support n in the time series x. A peak of support n is defined as a
    subsequence of x where a value occurs, which is bigger than its n neighbours to the left and to the right.
    """

    x_reduced = x[n:-n]

    res = None
    for i in range(1, n + 1):
        result_first = x_reduced > _roll(x, i)[n:-n]

        if res is None:
            res = result_first
        else:
            res &= result_first

        res &= x_reduced > _roll(x, -i)[n:-n]
    return np.sum(res)

def mean_abs_change(x):
    return np.mean(np.abs(np.diff(x)))

def mean_change(x):
    x = np.asarray(x)
    return (x[-1] - x[0]) / (len(x) - 1if len(x) > 1 else np.NaN

def mean_second_derivative_central(x):
    x = np.asarray(x)
    return (x[-1] - x[-2] - x[1] + x[0]) / (2 * (len(x) - 2)) if len(x) > 2 else np.NaN


def root_mean_square(x):
    return np.sqrt(np.mean(np.square(x))) if len(x) > 0 else np.NaN

def absolute_sum_of_changes(x):
    return np.sum(np.abs(np.diff(x)))

def longest_strike_below_mean(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.max(_get_length_sequences_where(x if x.size > 0 else 0

def longest_strike_above_mean(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.max(_get_length_sequences_where(x > np.mean(x))) if x.size > 0 else 0

def count_above_mean(x):
    m = np.mean(x)
    return np.where(x > m)[0].size

def count_below_mean(x):
    m = np.mean(x)
    return np.where(x 0].size

def last_location_of_maximum(x):
    x = np.asarray(x)
    return 1.0 - np.argmax(x[::-1]) / len(x) if len(x) > 0 else np.NaN

def first_location_of_maximum(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.argmax(x) / len(x) if len(x) > 0 else np.NaN

def last_location_of_minimum(x):
    x = np.asarray(x)
    return 1.0 - np.argmin(x[::-1]) / len(x) if len(x) > 0 else np.NaN

def first_location_of_minimum(x):
    if not isinstance(x, (np.ndarray, pd.Series)):
        x = np.asarray(x)
    return np.argmin(x) / len(x) if len(x) > 0 else np.NaN

# Test non-consecutive non-reoccuring values ?
def percentage_of_reoccurring_values_to_all_values(x):
    if len(x) == 0:
        return np.nan
    unique, counts = np.unique(x, return_counts=True)
    if counts.shape[0] == 0:
        return 0
    return np.sum(counts > 1) / float(counts.shape[0])

def percentage_of_reoccurring_datapoints_to_all_datapoints(x):
    if len(x) == 0:
        return np.nan
    if not isinstance(x, pd.Series):
        x = pd.Series(x)
    value_counts = x.value_counts()
    reoccuring_values = value_counts[value_counts > 1].sum()
    if np.isnan(reoccuring_values):
        return 0

    return reoccuring_values / x.size


def sum_of_reoccurring_values(x):
    unique, counts = np.unique(x, return_counts=True)
    counts[counts 2] = 0
    counts[counts > 1] = 1
    return np.sum(counts * unique)

def sum_of_reoccurring_data_points(x):
    unique, counts = np.unique(x, return_counts=True)
    counts[counts 2] = 0
    return np.sum(counts * unique)

def ratio_value_number_to_time_series_length






请到「今天看啥」查看全文