专栏名称: 经济学人集团
经济学人集团是分析国际商业及时事的主要来源。我们通过报纸杂志,会议商讨及电子服务等各种形式为您提供全方位信息
目录
相关文章推荐
参考消息  ·  北约新秘书长到访,泽连斯基抱怨 ·  1 周前  
参考消息  ·  事关以色列报复伊朗,拜登松口? ·  1 周前  
参考消息  ·  郑钦文强势逆转,晋级八强! ·  1 周前  
51好读  ›  专栏  ›  经济学人集团

PIBOT:Flight fantastic 机器人副驾驶,改装“无人机"的捷径 | 双语阅读

经济学人集团  · 公众号  · 国际 财经  · 2016-11-05 11:47

正文

点击关注“经济学人”,欢迎订阅并置顶
制造无人机,最快的做法是什么?与其专门打造的新飞机,不如把现有的飞机变成无人驾驶,或者让机器代为执行简单的常规飞行任务。一个名叫PIBOT(“飞行师机器人”)的新产品已经部分实现了这样的愿望,如果现有的飞机能即刻被高效地改装好,很多飞机将能够摇身一变为无人机。一旦成功,这种方法还能把数百万辆现有车辆简单迅速地变成无人驾驶汽车,潜力无限。商论十一月刊,聚集科技领域改良的力量


航空和机器人

奇幻航班

为何非要改造飞机让它们自己飞,而不为其配备机器人飞行员呢?


PIBOT(“飞行师机器人”)拥有人体的造型,头部装有摄像头,它的手臂和腿能像真人那样操作飞机的控制系统

无人机从设计之初就是一种无人驾驶的飞机,这一创意如今已为人熟知。但如果你想把现有的飞机变成无人驾驶呢?空军(尤其是美国空军)有时候就会这样改造他们想用做靶机的废弃飞机。他们用伺服电动机控制操纵杆和舵面,并添加新仪器和通信设备让整架飞机能够遥控飞行,如此打造出一套临时装置,足以让靶机保持飞行直至被击毁。不过,对无人驾驶的追求如今已远不止于想要随意扫射废弃F-16战机的那点需求。美国空军想将货运、燃料补给和侦察的任务都尽可能地交给机器人,而把配备人员的飞行任务主要留给精英战斗飞行员们。这种转变最终可由专门打造的新飞机实现,但如果现有的飞机能即刻被高效地改装好,而不再需要飞行员,那么这种转变的发生还会快得多。

沈贤哲(Shim Hyunchul,音译)以及他在韩国科学技术院(曾经名为Korea Advanced Institute of Science and Technology,后简称KAIST)的同事认为他们恰恰能做成这件事。他们的方案是在飞行员的座位上放上个机器人——这么说毫不夸张。正如照片所显示,这个名叫PIBOT(即“飞行师机器人”的简写)的机器人拥有人体的造型,有脑袋、躯干、手臂和腿。其头部装有摄像头,位置就等同于人眼,它的手臂和腿能操作飞机的控制系统,就像人所做的那样。

叫我乔治


在设计PIBOT时,沈博士和同事们把开飞机的任务拆分成三部分——识别、决策和行动。然后他们研发出了所需的机器智能和传感软件,能让一个机器人很好地完成这三部分任务,从而成功驾驶一架飞机。


识别的部分很简单。飞行学员需要学会忽略不相干的刺激因素而专注在仪器上,这对机器人来说是小菜一碟。飞行中大部分的识别任务都涉及读取屏幕上显示的简单文本和标记,现代视觉识别软件的能力已绰绰有余。与此同时,在望向驾驶舱外时,PIBOT带有的边缘侦测软件能够识别地平线和跑道标志这类特征。


要设计决策能力也同样简单。在这个环节,PIBOT就像标准自动驾驶仪那样工作,遵循无论哪个航空管理部门批准的飞行手册准则。然而,要为根据这些决策而产生的行动编写程序却是更棘手的事。每个这样的行动——比如按下某个开关或以规定的幅度移动操纵杆——都须由手臂或腿的关节联动来实现。这类动作需要经过精确的计算,再添加到机器人的内存中。


第一台PIBOT是一个基于市售BioLoid加强版机器人套件(BioLoid Premium)打造的缩小版本,于2014年演示。虽然仅40厘米高,但它具有和全尺寸设备相同的关节连接。当被拴在带有微型控制系统的驾驶舱模拟器内时,它能开展一整组飞行动作,从启动引擎、释放制动、滑动、起飞、飞行一条预定线路,直到在目的地安全降落。至关重要的是,它后来能在一架虽小型但却是真正的飞机上做同样的事,尽管在复杂的着陆环节需要人给予一些帮助。


如今,沈博士已经推出他这项发明的全尺寸版——PIBOT2。它在模拟器中的表现和其前身一样出色,但尚未在真正的驾驶舱内一显身手。如果它能在降落环节赶超其前身,那么它将达到美国空军对“嵌入式机器人系统”的要求。这样的系统可以被快速安装完毕而无需改造一架飞机,而且使用PIBOT2的单位成本仅为10万美元,比把一架F-16改装成靶机要节省90万美元。


对空军而言这真是好处多多。PIBOT的自主能力消除了遥控飞行所带有的干扰和失联风险。机器人不受重力制约,不会疲劳不会害怕,不需要氧气也不用睡觉,无需花数百万美元给它做飞行培训,只要下载一套软件就能学会怎么开飞机,然后再通过下载软件来不断升级其技能。


此外,沈博士认为PIBOT在军事上的运用只是个开端,它同样可以在商业航空中替代人类副驾驶,从而节约成本。它还可以改革地面运输,有可能带来“机器人司机”,成为无人驾驶汽车这种专门制造的汽车的替代选择。沈博士说他已经在研发会开车的PIBOT,这项任务相比开飞机“在某些方面更容易,而在另一些方面更难些”。如果能成功,这种方法将能把数百万辆现有车辆简单迅速地变成无人驾驶汽车。而汽车主人若想体验自己把控方向盘这种老式的快感,他仍然可以随时把机器人请到后座甚至后备箱里。






Aviation and robots

Flight fantastic

Instead of rewiring planes to fly themselves, why not give them android pilots?


THE idea of a drone—an aircraft designed from scratch to be pilotless—is now familiar. But what if you want to make pilotless a plane you already possess? Air forces, particularly America’s, sometimes do this with obsolete craft that they wish to fly for target practice.


By using servomotors to work the joystick and the control surfaces, and adding new instruments and communications so the whole thing can be flown remotely, a good enough lash-up can be achieved to keep the target airborne until it meets its fiery fate. The desire for pilotlessness, though, now goes way beyond the ability to take pot shots at redundant F-16s. America’s air force wants, as far as possible, to robotise cargo, refuelling and reconnaissance missions, leaving the manned stuff mostly to its top-gun fighter pilots. This could be done eventually with new, purpose-built aircraft. But things would happen much faster if existing machines could instantly and efficiently be retrofitted to make their pilots redundant.


Shim Hyunchul and his colleagues at KAIST (formerly the Korea Advanced Institute of Science and Technology) think they can manage just that. They plan to do so by, quite literally, putting a robot in the pilot’s seat. As the photograph shows, this robot—called PIBOT (short for pilot robot)—has a human body plan, with a head, torso, arms and legs. The head is packed with cameras, which are thus in the same place as a human being’s eyes, and the arms and legs can operate an aircraft’s controls, just as a human being would.


Call me George


To design PIBOT, Dr Shim and his colleagues broke the task of piloting down into three areas—recognition, decision and action. They then developed the machine intelligence and sensory software needed for a robot to carry all three out well enough to fly a plane.


The recognition part was fairly easy. Trainee pilots have to learn to ignore irrelevant stimuli and concentrate on the instruments, which is trivial for a robot. And most recognition tasks during flight involve reading simple text displays and markings, tasks for which modern optical-recognition software is more than adequate. For looking out of the cockpit, meanwhile, PIBOT has edge-detection software that recognises features like the horizon and runway markings.


Decision-making is similarly simple to program in. Here, PIBOT works like a standard autopilot, following the rules set down in the handbook of whichever aviation authority has to approve it. Programming in the actions consequent on these decisions, though, was trickier. Every such action—for example, flicking a particular switch or moving the joystick a prescribed amount—has to be expressed as a combination of arm- or leg-joint movements that have to be calculated precisely and then added to the robot’s memory.


The first PIBOT, a scaled-down version based on a commercially available ’bot called BioLoid Premium, was demonstrated in 2014. Though just 40cm tall, this had the same articulation as a full-sized device. When strapped into a cockpit simulator with miniature controls, it was able to go through a complete flight sequence, from turning on the engine and releasing the brakes to taxiing, taking off, flying a predetermined route and landing safely at the destination.


Crucially, it was then able to do the same in a real, albeit miniature aircraft—though it needed some human assistance with the tricky procedure of landing.


Now, Dr Shim has unveiled PIBOT2, a full-sized version of his invention. This flies a simulator as well as its predecessor did, though it has yet to be let loose in a real cockpit. If it can outperform that predecessor in the landing department, then it will fulfil the United States Air Force’s requirement for a “drop-in robotic system” that can be installed quickly without modifying an aircraft—and will do so at a unit cost of $100,000, which is $900,000 less than the cost of converting an F-16 for a trip to the great shooting gallery in the sky.


From an air force’s point of view there is a lot to like. PIBOT’s autonomy removes the risks of jamming or loss of a communication link that goes with remote control. The robot is immune to g-forces, fatigue and fear, requires neither oxygen nor sleep, needs only a software download—rather than millions of dollars of flight training—to work out how to pilot an aircraft, and can constantly be upgraded with new skills in the same way.


Moreover, Dr Shim sees the military use of PIBOT as just the beginning. It could also provide an economical replacement for a human co-pilot on commercial flights. It could revolutionise ground transport, too—providing, as an alternative to purpose-built driverless cars, the possibility of a robo-chauffeur. Dr Shim says he is already working on a PIBOT able to drive a car, a task which is, he says, “easier in some parts and more difficult in others” than piloting a plane. If successful, this approach could turn millions of existing vehicles into driverless ones quickly and easily. And the owner could still put the robot in the back seat (or even the boot) whenever he wanted to experience the old-fashioned thrill of taking the wheel himself.


已经免费阅读《航空和机器人:奇幻航班》双语版,欢迎登陆《经济学人·商论》App浏览十一月刊其他主题文章


《经济学人·全球商业评论》 

十一月刊主题目录

目录

全球另类投资

  • 美国房地产: 房地产信托投资基金(REIT)

  • 私人公司股票出售:交易场

  • 长期私募股权基金:巴菲特式投资玩法

  • 挪威的全球基金:怎样不花钱

  • 私募股权搜索基金:找到了,我们就资助

 

科技领域内的改良与革命

  • 航空和机器人:奇幻航班

  • 航空安全:逃生反应

  • 混合动力汽车:48伏系统终于出现


自动驾驶

  • 自动驾驶汽车:谁在自动驾驶你的汽车

  • 自动驾驶汽车保险:看,没有索赔!


欢迎关注《经济学人·全球商业评论》十一月刊


读商论,知天下

11.11前订阅全年内容仅需298元

↓ 扫码即刻下载



点击“阅读原文”,免费下载《经济学人·全球商业评论》App